【題目】已知A、B、C是拋物線y2=2px(p>0)上三個不同的點(diǎn),且AB⊥AC.

(Ⅰ)若A(1,2),B(4,﹣4),求點(diǎn)C的坐標(biāo);
(Ⅱ)若拋物線上存在點(diǎn)D,使得線段AD總被直線BC平分,求點(diǎn)A的坐標(biāo).

【答案】解:(Ⅰ)∵A(1,2)在拋物線y2=2px(p>0)上,∴p=2,

設(shè)C( ,t),則由AB⊥AC,得kABkAC=﹣1,

∵A(1,2),B(4,﹣4),kABkAC=﹣1,

∴kABkAC= × =﹣1,

解得t=6,即C(9,6).

(Ⅱ)設(shè)A(x0,y0),B( ),C( ),

則直線BC的方程為(y1+y2)(y+y0)=2p(x﹣2p﹣x0),

故直線BC恒過點(diǎn)E(x0+2p,﹣y0),

∴直線AE的方程為y=﹣ (x﹣x0)+y0,

代入拋物線方程y2=2px(p>0),得點(diǎn)D的坐標(biāo)為( ,﹣ ),

∵線段AD總被直線BC平分,

,解得

∴點(diǎn)A的坐標(biāo)A( ).


【解析】(Ⅰ)由A(1,2)在拋物線上,求出p=2,設(shè)C( ,t),則由kABkAC=﹣1,解得t=6,由此能求出C點(diǎn)坐標(biāo).(Ⅱ)設(shè)A(x0,y0),B( ),C( ),則直線BC的方程為(y1+y2)(y+y0)=2p(x﹣2p﹣x0),從而直線BC恒過點(diǎn)E(x0+2p,﹣y0),直線AE的方程為y=﹣ (x﹣x0)+y0,代入拋物線方程,得D( ,﹣ ),利用線段AD總被直線BC平分,能求出點(diǎn)A的坐標(biāo).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由于霧霾日趨嚴(yán)重,政府號召市民乘公交出行.但公交車的數(shù)量太多會造成資源的浪費(fèi),太少又難以滿足乘客需求.為此,某市公交公司在某站臺的60名候車乘客中進(jìn)行隨機(jī)抽樣,共抽取10人進(jìn)行調(diào)查反饋,所選乘客情況如下表所示:

組別

候車時間(單位:min)

人數(shù)

[0,5)

1

[5,10)

5

[10,15)

3

[15,20)

1


(1)估計這60名乘客中候車時間少于10分鐘的人數(shù);
(2)現(xiàn)從這10人中隨機(jī)取3人,求至少有一人來自第二組的概率;
(3)現(xiàn)從這10人中隨機(jī)抽取3人進(jìn)行問卷調(diào)查,設(shè)這3個人共來自X個組,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C: ,(θ為參數(shù)),在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程2ρcosθ+ρsinθ﹣6=0.
(1)寫出曲線C的普通方程,直線l的直角坐標(biāo)方程;
(2)過曲線C上任意一點(diǎn)P作與l夾角為30°的直線,交l于點(diǎn)A,求|PA|的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A、B、C所對的邊分別是a、b、c,已知3asinC=ccosA.
(Ⅰ)求sinA的值;
(Ⅱ)若B= ,△ABC的面積為9,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中有6個編號不同的黑球和3個編號不同的白球,這9個球的大小及質(zhì)地都相同,現(xiàn)從該袋中隨機(jī)摸取3個球,則這三個球中恰有兩個黑球和一個白球的方法總數(shù)是 , 設(shè)摸取的這三個球中所含的黑球數(shù)為X,則P(X=k)取最大值時,k的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+3x對任意的m∈[﹣2,2],f(mx﹣2)+f(x)<0恒成立,則x∈

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣a|,不等式f(x)≤3的解集為[﹣1,5].
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)若f(x)+f(x+5)≥m對一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a,b,c分別是內(nèi)角A,B,C的對邊,且(a+c)2=b2+3ac.
(Ⅰ)求角B的大小;
(Ⅱ)若b=2,且sinB+sin(C﹣A)=2sin2A,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知m≠0,向量 =(m,3m),向量 =(m+1,6),集合A={x|(x﹣m2)(x+m﹣2)=0}.
(1)判斷“ ”是“| |= ”的什么條件
(2)設(shè)命題p:若 ,則m=﹣19,命題q:若集合A的子集個數(shù)為2,則m=1,判斷p∨q,p∧q,¬q的真假,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案