(本題滿分13分)一艘輪船在航行中每小時(shí)的燃料費(fèi)和它的速度的立方成正比,已知在速度為每小時(shí)10公里時(shí)的燃料費(fèi)是每小時(shí)8元,而其他與速度無關(guān)的費(fèi)用是每小時(shí)128元.
(1)求輪船航行一小時(shí)的總費(fèi)用與它的航行速度(公里/小時(shí))的函數(shù)關(guān)系式;
(2)問此輪船以多大的速度航行時(shí),能使每公里的總費(fèi)用最少?

(1)  (2) 此輪船以20公里/小時(shí)的速度行駛時(shí)每公里的費(fèi)用總和最小

解析試題分析:(1)設(shè)船速度為x公里/小時(shí)(x>0)時(shí),燃料費(fèi)用為Q元, (1分)則 (2分)
     
.(6分)
(2)由(1)知,每公里的總費(fèi)用   (9分)
  (10分)  令,得 
 
∴當(dāng)x=20時(shí),y取得最小值  (11分)
∴此輪船以20公里/小時(shí)的速度行駛時(shí)每公里的費(fèi)用總和最小.(13分)
考點(diǎn):導(dǎo)數(shù)在實(shí)際生活中的暈喲個(gè)
點(diǎn)評(píng):結(jié)合已知的條件,得到函數(shù)的模型結(jié)合導(dǎo)數(shù)的知識(shí)判定單調(diào)性,得到最值的求解,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某企業(yè)擬建造如圖所示的容器(不計(jì)厚度,長度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設(shè)計(jì)要求容器的體積為立方米,且.假設(shè)該容器的建造費(fèi)用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費(fèi)用為3千元,半球形部分每平方米建造費(fèi)用為千元,設(shè)該容器的建造費(fèi)用為千元.

(1)寫出關(guān)于的函數(shù)表達(dá)式,并求該函數(shù)的定義域;
(2)求該容器的建造費(fèi)用最小時(shí)的

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分15分)
經(jīng)過長期的觀測得到:在交通繁忙時(shí)段,某公路段汽車的車流量y(千輛/小時(shí))與汽車的平均速度v(千米/小時(shí))之間的函數(shù)關(guān)系為
(1)在該時(shí)段內(nèi),當(dāng)汽車的平均速度v為多少時(shí),車流量最大?最大車流量為多少?
(精確到0.1千輛/小時(shí))
(2)若要求在該時(shí)段內(nèi)車流量超過10千輛/小時(shí),則汽車的平均速度應(yīng)在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知二次函數(shù),關(guān)于的不等式的解集為,其中為非零常數(shù).設(shè).
(1)求的值;
(2)R如何取值時(shí),函數(shù)存在極值點(diǎn),并求出極值點(diǎn);
(3)若,且,求證:N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)已知指數(shù)函數(shù),當(dāng)時(shí),有,解關(guān)于x的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)某企業(yè)擬投資、兩個(gè)項(xiàng)目,預(yù)計(jì)投資項(xiàng)目萬元可獲得利潤
萬元;投資項(xiàng)目萬元可獲得利潤萬元.若該企業(yè)用40
萬元來投資這兩個(gè)項(xiàng)目,則分別投資多少萬元能獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
圖1是某種稱為“凹槽”的機(jī)械部件的示意圖,圖2是凹槽的橫截面(陰影部分)示意圖,其中四邊形ABCD是矩形,弧CmD是半圓,凹槽的橫截面的周長為4.已知凹槽的強(qiáng)度與橫截面的面積成正比,比例系數(shù)為,設(shè)AB=2x,BC=y.

(1)寫出y關(guān)于x函數(shù)表達(dá)式,并指出x的取值范圍;
(2)求當(dāng)x取何值時(shí),凹槽的強(qiáng)度最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)上海某玩具廠生產(chǎn)套世博吉祥物“海寶”所需成本費(fèi)用為元,且,而每套“海寶”售出的價(jià)格為元,其中 
(1)問:該玩具廠生產(chǎn)多少套“海寶”時(shí),使得每套所需成本費(fèi)用最少?
(2)若生產(chǎn)出的“海寶”能全部售出,且當(dāng)產(chǎn)量為150套時(shí)利潤最大,此時(shí)每套價(jià)格為30元,求的值.(利潤 = 銷售收入-成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

利民商店經(jīng)銷某種洗衣粉,年銷售量為6000包,每包進(jìn)價(jià)2.80元,銷售價(jià)3.40元,全年分若干次進(jìn)貨,每次進(jìn)貨x包,已知每次進(jìn)貨運(yùn)輸勞務(wù)費(fèi)62.50元,全年保管費(fèi)為1.5x元。
(1)把該商店經(jīng)銷洗衣粉一年的利潤y(元)表示為每次進(jìn)貨量x(包)的函數(shù),并指出函數(shù)的定義域;
(2)為了使利潤最大,每次應(yīng)該進(jìn)貨多少包?

查看答案和解析>>

同步練習(xí)冊(cè)答案