已知O是銳角三角形ABC的外接圓的圓心,角A,B,C的對邊分別為a,b,c,且A=,若,則m,的值為( )
A.
B.1
C.
D.
【答案】分析:根據(jù)三角形內(nèi)心的充要條件:若O是銳角三角形ABC的外接圓的圓心,P是平面內(nèi)任一點,則=++,代入A=,并令P與A點重合,可構(gòu)造關(guān)于m的方程.
解答:解:∵O是銳角三角形ABC的外接圓的圓心,根據(jù)外心的充要條件可得,
對于平面內(nèi)任意點P均有:
=++
令P與A點重合,由A=可得:
=+=
又∵,
∴2m=
∴m=
故選A
點評:本題考查的知識點是向量在幾何中的應(yīng)用,其中熟練掌握三角形內(nèi)心的充要條件:若O是銳角三角形ABC的外接圓的圓心,P是平面內(nèi)任一點,則=++,是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知O是銳角三角形△ABC的外接圓的圓心,且∠A=θ,若
cosB
sinC
AB
+
cosC
sinB
AC
=2m
AO
,則m=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O是銳角三角形ABC的外接圓的圓心,角A,B,C的對邊分別為a,b,c,且A=
π
4
,若
cosB
sinC
AB
+
cosC
sinB
AC
=2m
AO
,則m,的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知O是銳角三角形△ABC的外接圓的圓心,且∠A=θ,若
cosB
sinC
AB
+
cosC
sinB
AC
=2m
AO
,則m=(  )
A.sinθB.cosθC.tanθD.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省荊州市公安三中高三(上)數(shù)學(xué)積累測試卷10(解析版) 題型:選擇題

已知O是銳角三角形△ABC的外接圓的圓心,且∠A=θ,若,則m=( )
A.sinθ
B.cosθ
C.tanθ
D.不能確定

查看答案和解析>>

同步練習(xí)冊答案