如圖,側(cè)棱垂直底面的三棱柱的底面位于平行四邊形中,,,,點(diǎn)為中點(diǎn).
(Ⅰ)求證:平面平面.
(Ⅱ)設(shè)二面角的大小為,直線與平面所成的角為,求的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)如圖所示,正方形和矩形所在平面相互垂直,是的中點(diǎn).
(1)求證:;
(2)若直線與平面成45o角,求異面直線與所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分10分)
六棱臺(tái)的上、下底面均是正六邊形,邊長(zhǎng)分別是8 cm和18 cm,側(cè)面是全等的等腰梯形,側(cè)棱長(zhǎng)為13 cm,求它的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
直四棱柱的底面是菱形,,其側(cè)面展開(kāi)圖是邊長(zhǎng)為的正方形.、分別是側(cè)棱、上的動(dòng)點(diǎn),.
(Ⅰ)證明:;
(Ⅱ)在棱上,且,若∥平面,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題12分)
如圖,在三棱錐中,為的中點(diǎn),平面,垂足落在線段上,已知
(1)證明:;
(2)在線段上是否存在點(diǎn),使得二面角為直二面角?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD//BC,∠ADC=90°平面PAD⊥底面ABCD,Q為AD的中點(diǎn),M是棱PC上的點(diǎn),PA=PD=2,BC=AD=1,CD=.
(Ⅰ)求證:平面PQB⊥平面PAD;
(Ⅱ)設(shè)PM="t" MC,若二面角M-BQ-C的平面角的大小為30°,試確定t的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)已知平面,平面,△為等邊三角形,邊長(zhǎng)為2a,,為的中點(diǎn).
(1)求證:平面;
(2)求證:平面平面;
(3)求直線和平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分14分)如圖,在四棱錐E-ABCD中,底面ABCD為正方形, AE⊥平面CDE,已知AE=3,DE=4.
(Ⅰ)若F為DE的中點(diǎn),求證:BE//平面ACF;
(Ⅱ)求直線BE與平面ABCD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
三棱錐中,兩兩垂直且相等,點(diǎn)分別是線段和上移動(dòng),且滿足,,則和所成角余弦值的取值范圍是( )
A. | B. | C. | D. |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com