已知x>
12
,函數(shù)f(x)=x2,h(x)=2e lnx(e為自然常數(shù)).
(Ⅰ)求證:f(x)≥h(x);
(Ⅱ)若f(x)≥h(x)且g(x)≤h(x)恒成立,則稱函數(shù)h(x)的圖象為函數(shù)f(x),g(x)的“邊界”.已知函數(shù)g(x)=-4x2+px+q(p,q∈R),試判斷“函數(shù)f(x),g(x)以函數(shù)h(x)的圖象為邊界”和“函數(shù)f(x),g(x)的圖象有且僅有一個公共點”這兩個條件能否同時成立?若能同時成立,請求出實數(shù)p、q的值;若不能同時成立,請說明理由.
分析:(I)把兩個函數(shù)相減構造新函數(shù),求函數(shù)的導數(shù),使得導數(shù)大于0,得到函數(shù)的函數(shù)的單調(diào)區(qū)間,求出函數(shù)的最小值,最小值等于0,得到兩個函數(shù)之間的大小關系.
(II)構造新函數(shù)v(x)=h(x)-g(x)=2elnx+4x2-px-q,v(x)≥0恒成立”與“函數(shù)f(x),g(x)的圖象有且僅有一個公共點”同時成立,利用導數(shù)求出新函數(shù)的單調(diào)區(qū)間和最值,求出兩個函數(shù)同時成立時p,q的值.
解答:解:(I)證明:記u(x)=f(x)-h(x)=x2-2elnx,
u′(x)=2x-
2e
x
,
令u'(x)>0,注意到x>
1
2
,可得x>
e

所以函數(shù)u(x)在(
1
2
,
e
)
上單調(diào)遞減,在(
e
,+∞)
上單調(diào)遞增.u(x)min=u(
e
)=f(
e
)-h(
e
)=e-e=0
,即u(x)≥0,
∴f(x)≥h(x). 
(II)由(I)知,f(x)≥h(x)對x>
1
2
恒成立,當且僅當x=
e
時等號成立,
記v(x)=h(x)-g(x)=2elnx+4x2-px-q,則
“v(x)≥0恒成立”與“函數(shù)f(x),g(x)的圖象有且僅有一個公共點”同時成立,
即v(x)≥0對x>
1
2
恒成立,當且僅當x=
e
時等號成立,
所以函數(shù)v(x)在x=
e
時取極小值,
注意到v′(x)=
2e
x
+8x-p=
8x2-px+2e
x
,
v′(
e
)=0
,解得p=10
e
,
此時v′(x)=
8(x-
e
)(x-
e
2
)
x
,
x>
1
2
知,函數(shù)v(x)在(
1
2
e
)
上單調(diào)遞減,在(
e
,+∞)
上單調(diào)遞增,
v(x)min=v(
e
)=h(
e
)-g(
e
)=-5e-q
=0,q=-5e,
綜上,兩個條件能同時成立,此時p=10
e
,q=-5e
點評:本題考查函數(shù)的導數(shù)在最值中的應用,解題的關鍵是構造新函數(shù),利用函數(shù)恒成立的思想解決問題,注意本題的運算也比較多,不要在這種運算上出錯.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知a=
5
-1
2
,函數(shù)f(x)=ax,若實數(shù)m、n滿足f(m)>f(n),則m、n的大小關系為
m<n
m<n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a=
5
-1
2
,函數(shù)f(x)=ax,若實數(shù)m、n滿足f(m)>f(n),則m、n的大小關系為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a=
5
-1
2
,函數(shù)f(x)=loga(1-x),若正實數(shù)m、n滿足f(m)>f(n),則m、n的大小關系為
m>n
m>n

查看答案和解析>>

科目:高中數(shù)學 來源:鄭州二模 題型:解答題

已知x>
1
2
,函數(shù)f(x)=x2,h(x)=2e lnx(e為自然常數(shù)).
(Ⅰ)求證:f(x)≥h(x);
(Ⅱ)若f(x)≥h(x)且g(x)≤h(x)恒成立,則稱函數(shù)h(x)的圖象為函數(shù)f(x),g(x)的“邊界”.已知函數(shù)g(x)=-4x2+px+q(p,q∈R),試判斷“函數(shù)f(x),g(x)以函數(shù)h(x)的圖象為邊界”和“函數(shù)f(x),g(x)的圖象有且僅有一個公共點”這兩個條件能否同時成立?若能同時成立,請求出實數(shù)p、q的值;若不能同時成立,請說明理由.

查看答案和解析>>

同步練習冊答案