【題目】已知橢圓過點,且離心.
(1)求橢圓的方程;
(2)設(shè),是橢圓上異于點的任意兩點,直線,,的斜率分別為,,,且,試問當時,直線是否恒過一定點?若是,求出該定點的坐標;若不是,說明理由.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,圓的參數(shù)方程為(為參數(shù)),在以原點為極點,軸的非負半軸為極軸建立的極坐標系中,直線的極坐標方程為.
(1)求圓的普通方程和直線的直角坐標方程;
(2)設(shè)直線與軸,軸分別交于,兩點,點是圓上任一點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,點為坐標原點,一條直線與圓相切并與橢圓交于不同的兩點.
(1)設(shè),求的表達式;
(2)若,求直線的方程;
(3)若,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩地相距,某船從地逆水到地,水速為,船在靜水中的速度為.若船每小時的燃料費與其在靜水中速度的平方成正比,當,每小時的燃料費為元,為了使全程燃料費最省,船的實際速度應(yīng)為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是
A. y與x具有正的線性相關(guān)關(guān)系
B. 回歸直線過樣本點的中心(,)
C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,右焦點為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(1)求橢圓的方程;
(2)如圖,過定點的直線交橢圓于兩點,連接并延長交于,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com