【題目】現(xiàn)有半徑為R、圓心角(∠AOB)為90°的扇形材料,要裁剪出一個(gè)五邊形工件OECDF,如圖所示.其中E,F(xiàn)分別在OA,OB上,C,D在 上,且OE=OF,EC=FD,∠ECD=∠CDF=90°.記∠COD=2θ,五邊形OECDF的面積為S.
(1)試求S關(guān)于θ的函數(shù)關(guān)系式;
(2)求S的最大值.
【答案】
(1)解:設(shè)M是CD中點(diǎn),連OM,由OC=OD,可知OM⊥CD,
∠COM=∠DOM=, ,MD=Rsinθ,
又OE=OF,EC=FD,OC=OD,可得△CEO≌△DFO,
故∠EOC=∠DOF,可知 ,
又DF⊥CD,OM⊥CD,所以MO∥DF,故∠DFO= ,
在△DFO中,有 ,
可得
所以S=S△COD+SODF+SOCE=S△COD+2SODF=
=
(2)解:
= (其中 )
當(dāng) ,即 時(shí),sin(2θ+φ)取最大值1.
又 ,所以S的最大值為 .
【解析】(1)設(shè)M是CD中點(diǎn),連OM,推出∠COM=∠DOM= ,MD=Rsinθ,利用△CEO≌△DFO,轉(zhuǎn)化求解∠DFO= ,在△DFO中,利用正弦定理 ,求解S=S△COD+SODF+SOCE=S△COD+2SODF的解析式即可.(2)利用S的解析式,通過(guò)三角函數(shù)的最值求解即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)為偶函數(shù),當(dāng)x<0時(shí),f(x)=ln(﹣x)+3x,則曲線(xiàn)y=f(x)在點(diǎn)(1,﹣3)處的切線(xiàn)方程是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩位同學(xué)參加數(shù)學(xué)文化知識(shí)競(jìng)賽培訓(xùn).現(xiàn)分別從他們?cè)谂嘤?xùn)期間參加的若干次測(cè)試成績(jī)中隨機(jī)抽取8次,記錄如下: 甲:8281797895889384
乙:9295807583809085
(Ⅰ)用莖葉圖表示這兩組數(shù)據(jù);
(Ⅱ)現(xiàn)要從中選派一人參加正式比賽,從所抽取的兩組數(shù)據(jù)分析,你認(rèn)為選派哪位同學(xué)參加較為合適?并說(shuō)明理由;
(Ⅲ)若對(duì)甲同學(xué)在今后的3次測(cè)試成績(jī)進(jìn)行預(yù)測(cè),記這3次成績(jī)中高于80分的次數(shù)為ξ(將甲8次成績(jī)中高于80分的頻率視為概率),求ξ的分布列及數(shù)學(xué)期望Eξ.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知g(x)是定義在R上的奇函數(shù),且當(dāng)x<0時(shí),g(x)=﹣ln(1﹣x),函數(shù)f(x)= ,若f(2﹣x2)>f(x),則x的取值范圍是( )
A.(﹣∞,﹣2)∪(1,+∞)
B.(﹣∞,1)∪(2,+∞)
C.(﹣2,1)
D.(1,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知2cosC(acosB+bcosA)=c. (Ⅰ)求C;
(Ⅱ)若c= ,△ABC的面積為 ,求△ABC的周長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= 且x>0).若存在實(shí)數(shù)p,q(p<q),使得f(x)≤0的解集恰好為[p,q],則a的取值范圍是( )
A.(0, ]
B.(一∞, ]
C.(0, )
D.(一∞, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線(xiàn)l的參數(shù)方程為 (t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸)中,圓C的方程為ρ=6sinθ. (Ⅰ)求直角坐標(biāo)下圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(diǎn)P(l,2),設(shè)圓C與直線(xiàn)l交于點(diǎn)A,B,求|PA|+|PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù)f(x)= ,有下列5個(gè)結(jié)論:
①任取x1 , x2∈[0,+∞),都有|f(x1)﹣f(x2)|≤2;
②函數(shù)y=f(x)在區(qū)間[4,5]上單調(diào)遞增;
③f(x)=2kf(x+2k)(k∈N+),對(duì)一切x∈[0,+∞)恒成立;
④函數(shù)y=f(x)﹣ln(x﹣1)有3個(gè)零點(diǎn);
⑤若關(guān)于x的方程f(x)=m(m<0)有且只有兩個(gè)不同實(shí)根x1 , x2 , 則x1+x2=3.
則其中所有正確結(jié)論的序號(hào)是 . (請(qǐng)寫(xiě)出全部正確結(jié)論的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2lnx﹣3x2﹣11x.
(1)求曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)方程;
(2)若關(guān)于x的不等式f(x)≤(a﹣3)x2+(2a﹣13)x+1恒成立,求整數(shù)a的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com