已知函數(shù)
(1)若,試確定函數(shù)的單調區(qū)間;
(2)若,且對于任意,恒成立,試確定實數(shù)的取值范圍;
(1)詳見解析(2).
解析試題分析:(1)求出函數(shù)的導數(shù),只要解導數(shù)的不等式即可,根據(jù)導數(shù)與0的關系判斷函數(shù)的單調性;
(2)函數(shù)f(|x|)是偶函數(shù),只要f(x)>0對任意x≥0恒成立即可,等價于f(x)在[0,+∞)的最小值大于零.
試題解析:解:(1)由得,所以.
由得,故的單調遞增區(qū)間是,
由得,故的單調遞減區(qū)間是. 4
(2)由可知是偶函數(shù).
于是對任意成立等價于對任意成立.
由得.
①當時,.
此時在上單調遞增.
故,符合題意.
②當時,.
當變化時的變化情況如下表:
由此可得,在上,.單調遞減 極小值 單調遞增
依題意,,又.
綜合①,②得,實數(shù)的取值范圍是.
考點:1.利用導數(shù)求閉區(qū)間上函數(shù)的最值;2.利用導數(shù)研究函數(shù)的單調性..
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)是定義在上的奇函數(shù),當時, (其中e是自然界對數(shù)的底,)
(1)求的解析式;
(2)設,求證:當時,且,恒成立;
(3)是否存在實數(shù)a,使得當時,的最小值是3 ?如果存在,求出實數(shù)a的值;如果不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),滿足,且,為自然對數(shù)的底數(shù).
(1)已知,求在處的切線方程;
(2)若存在,使得成立,求的取值范圍;
(3)設函數(shù),為坐標原點,若對于在時的圖象上的任一點,在曲線上總存在一點,使得,且的中點在軸上,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)若函數(shù)在點處的切線方程為,求的值;
(2)若,函數(shù)在區(qū)間內有唯一零點,求的取值范圍;
(3)若對任意的,均有,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù)的定義域是,其中常數(shù).
(1)若,求的過原點的切線方程.
(2)當時,求最大實數(shù),使不等式對恒成立.
(3)證明當時,對任何,有.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分15分)已知函數(shù)
(Ⅰ)若曲線在點處的切線與直線平行,求的值;
(Ⅱ)記,,且.求函數(shù)的單調遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),.
(1)若函數(shù)在其定義域上為增函數(shù),求的取值范圍;
(2)當時,函數(shù)在區(qū)間上存在極值,求的最大值.
(參考數(shù)值:自然對數(shù)的底數(shù)≈).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù).
(1)求的單調區(qū)間;
(2)當時,若方程在上有兩個實數(shù)解,求實數(shù)的取值范圍;
(3)證明:當時,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com