設(shè)橢圓數(shù)學(xué)公式的兩焦點為F1,F(xiàn)2,M為橢圓上任一點,P為△F1MF2的內(nèi)心,連接MP并延長交橢圓長軸于N,則數(shù)學(xué)公式的值為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
D
分析:由于三角形的內(nèi)心是三個內(nèi)角的平分線的交點,根據(jù)三角形內(nèi)角平分線性質(zhì)定理把所求的比值轉(zhuǎn)化為三角形邊長之間的比值關(guān)系來求解.
解答:解:如圖,連接PF1,PF2.在△MF1P中,F(xiàn)1P是∠MF1N的角平分線,
根據(jù)三角形內(nèi)角平分線性質(zhì)定理,
同理可得
則有,
根據(jù)等比定理=
設(shè)F1到MN的距離為d
===
故選:D
點評:本題主要考查圓錐曲線的定義的應(yīng)用,試題在平面幾何中的三角形內(nèi)角平分線性質(zhì)定理、等比定理和圓錐曲線的定義之間的綜合應(yīng)用,在解決涉及到圓錐曲線上的點與焦點之間的關(guān)系的問題中,圓錐曲線的定義往往是解題的突破口.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的兩焦點為F1(-
3
,0)
F2(
3
,0)
,離心率e=
3
2

(1)求此橢圓的方程;
(2)設(shè)直線l:y=x+m,若l與此橢圓相交于P,Q兩點,且|PQ|等于橢圓的短軸長,求m的值;
(3)以此橢圓的上頂點B為直角頂點作橢圓的內(nèi)接等腰直角三角形ABC,這樣的直角三角形是否存在?若存在,請說明有幾個;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的兩焦點為F1(-
3
,0),F(xiàn)2
3
,0),離心率e=
3
2

(1)求此橢圓的方程;
(2)設(shè)直線l:y=x+m,若l與此橢圓相交于P,Q兩點,且|PQ|等于橢圓的短軸長,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的兩焦點為F1(-
3
,0),F(xiàn)2
3
,0),離心率e=
3
2

(Ⅰ)求此橢圓的方程.
(Ⅱ)設(shè)直線y=
x
2
+m
與橢圓交于P,Q兩點,且|PQ|的長等于橢圓的短軸長,求m的值.
(Ⅲ)若直線y=
x
2
+m
與此橢圓交于M,N兩點,求線段MN的中點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年吉林省長春十一高高二(下)期初數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知橢圓的兩焦點為F1(-,0),F(xiàn)2,0),離心率e=
(1)求此橢圓的方程;
(2)設(shè)直線l:y=x+m,若l與此橢圓相交于P,Q兩點,且|PQ|等于橢圓的短軸長,求m的值.

查看答案和解析>>

同步練習(xí)冊答案