【題目】圖一是美麗的“勾股樹”,它是一個直角三角形分別以它的每一邊向外作正方形而得到.圖二是第1代“勾股樹”,重復(fù)圖二的作法,得到圖三為第2代“勾股樹”,以此類推,已知最大的正方形面積為1,則第代“勾股樹”所有正方形的個數(shù)與面積的和分別為( )
A. B. C. D.
【答案】A
【解析】
第1代“勾股樹”中,小正方形的個數(shù)3=21+1﹣1=3,所有正方形的面積之和為2=(1+1)×1,第2代“勾股樹”中,小正方形的個數(shù)7=22+1﹣1,所有的正方形的面積之和為3=(2+1)×1,以此類推,第n代“勾股樹”所有正方形的個數(shù)為2n+1﹣1,第n代“勾股樹”所有正方形的面積的和為:(n+1)×1=n+1.
解:第1代“勾股樹”中,小正方形的個數(shù)3=21+1﹣1=3,
如圖(2),設(shè)直角三角形的三條邊長分別為a,b,c,
根據(jù)勾股定理得a2+b2=c2,
即正方形A的面積+正方形B的面積=正方形C的面積=1,
所有正方形的面積之和為2=(1+1)×1,
第2代“勾股樹”中,小正方形的個數(shù)7=22+1﹣1,
如圖(3),正方形E的面積+正方形F的面積=正方形A的面積,
正方形M的面積+正方形N的面積=正方形B的面積,
正方形E的面積+正方形F的面積+正方形M的面積+正方形N的面積=正方形A的面積+正方形B的面積=正方形C的面積=1,
所有的正方形的面積之和為3=(2+1)×1,
…
以此類推,第n代“勾股樹”所有正方形的個數(shù)為2n+1﹣1,
第n代“勾股樹”所有正方形的面積的和為:(n+1)×1=n+1.
故選:A.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年2月25日,平昌冬奧會閉幕式上的“北京8分鐘”驚艷了世界。我們學(xué)校為了讓我們更好的了解奧運,了解新時代祖國的科技發(fā)展,在高二年級舉辦了一次知識問答比賽。比賽共設(shè)三關(guān),第一、二關(guān)各有兩個問題,兩個問題全答對,可進入下一關(guān);第三關(guān)有三個問題,只要答對其中兩個問題,則闖關(guān)成功。每過一關(guān)可一次性獲得分別為1、2、3分的積分獎勵,高二、一班對三關(guān)中每個問題回答正確的概率依次為,且每個問題回答正確與否相互獨立.
(1)記表示事件“高二、一班未闖到第三關(guān)”,求的值;
(2)記表示高二、一班所獲得的積分總數(shù),求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)請用“五點法”畫出函數(shù)在一個周期上的圖象(先在所給的表格中填上所需的數(shù)字,再畫圖);
(2)求的單調(diào)遞增區(qū)間;
(3)求在區(qū)間上的最大值和最小值及相應(yīng)的的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某村莊擬修建一個無蓋的圓柱形蓄水池(不計厚度).設(shè)該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè)面積的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為12000π元(π為圓周率).
(1)將V表示成r的函數(shù)V(r),并求該函數(shù)的定義域;
(2)討論函數(shù)V(r)的單調(diào)性,并確定r和h為何值時該蓄水池的體積最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)分別為橢圓的左、右焦點,點為橢圓的左頂點,點為橢圓的上頂點,且.
(Ⅰ)若橢圓的離心率為,求橢圓的方程;
(Ⅱ)設(shè)為橢圓上一點,且在第一象限內(nèi),直線與軸相交于點,若以為直徑的圓經(jīng)過點,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形ABCD中,AD∥BC,AD=AB=1,AD⊥AB,∠BCD=45°,將△ABD沿對角線BD折起,設(shè)折起后點A的位置為A′,使二面角A′—BD—C為直二面角,給出下面四個命題:①A′D⊥BC;②三棱錐A′—BCD的體積為;③CD⊥平面A′BD;④平面A′BC⊥平面A′DC.其中正確命題的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司要在一條筆直的道路邊安裝路燈,要求燈柱與地面垂直,燈桿與燈柱所在的平面與道路走向垂直,路燈采用錐形燈罩,射出的光線與平面的部分截面如圖中陰影部分所示.已知,,路寬米.設(shè).
(1)求燈柱的高(用表示);
(2)此公司應(yīng)該如何設(shè)置的值才能使制造路燈燈柱與燈桿所用材料的總長度最?最小值為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐,底面為菱形, ,H為上的點,過的平面分別交于點,且平面.
(1)證明: ;
(2)當(dāng)為的中點, ,與平面所成的角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)要完成下列三項抽樣調(diào)查:①從罐奶粉中抽取罐進行食品安全衛(wèi)生檢查;②高二年級有名學(xué)生,為調(diào)查學(xué)生的學(xué)習(xí)情況抽取一個容量為的樣本;③從某社區(qū)戶高收入家庭,戶中等收入家庭,戶低收入家庭中選出戶進行消費水平調(diào)查.以下各調(diào)查方法較為合理的是( )
A.①系統(tǒng)抽樣,②簡單隨機抽樣,③分層抽樣
B.①簡單隨機抽樣,②分層抽樣,③系統(tǒng)抽樣
C.①分層抽樣,②系統(tǒng)抽樣,③簡單隨機抽樣
D.①簡單隨機抽樣,②系統(tǒng)抽樣,③分層抽樣
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com