已知函數(shù)的定義域為,
(1)求;
(2)當時,求的最小值.

(Ⅰ);(Ⅱ)=.

解析試題分析:(Ⅰ)利用使函數(shù)解析式有意義的的取值范圍求解函數(shù)的定義域;(Ⅱ)分析二次函數(shù)在區(qū)間上的單調(diào)性,然后求最值.
試題解析:(Ⅰ)依題意,,解得 
(Ⅱ)=
,,.
①若,即時,==,
②若,即時,
時,=
考點:函數(shù)的定義域,二次函數(shù)的最值,考查學生的分析計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)設(shè)的定義域為A,求集合A;
(2)判斷函數(shù)在(1,+)上單調(diào)性,并用單調(diào)性的定義加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知m為常數(shù),函數(shù)為奇函數(shù).
(1)求m的值;
(2)若,試判斷的單調(diào)性(不需證明);
(3)若,存在,使,求實數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)定義域為的函數(shù)為實數(shù))。
(1)若是奇函數(shù),求的值;  
(2)當是奇函數(shù)時,證明對任何實數(shù)都有成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)的定義域為.
⑴求的取值范圍;
⑵當取最大值時,解關(guān)于的不等式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知定義域為的函數(shù)是奇函數(shù).
(1)求的值;
(2)判斷函數(shù)的單調(diào)性,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)若,解不等式;
(2)若,,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù), .
(1)若, 函數(shù) 在其定義域是增函數(shù),求的取值范圍;
(2)在(1)的結(jié)論下,設(shè)函數(shù)的最小值;
(3)設(shè)函數(shù)的圖象與函數(shù)的圖象交于點,過線段的中點軸的垂線分別交、于點、,問是否存在點,使處的切線與處的切線平行?若存在,求出的橫坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(1)已知函數(shù)為有理數(shù)且),求函數(shù)的最小值;
(2)①試用(1)的結(jié)果證明命題:設(shè)為有理數(shù)且,若時,則;
②請將命題推廣到一般形式,并證明你的結(jié)論;
注:當為正有理數(shù)時,有求導公式

查看答案和解析>>

同步練習冊答案