【題目】某高校調查了200名學生每周的自習時間(單位:小時),制成了如圖所示的頻率分布直方圖,其中自習時間的范圍是[17.5,30],樣本數(shù)據(jù)分組為[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根據(jù)直方圖,這200名學生中每周的自習時間不少于22.5小時的人數(shù)是( 。

A.56
B.60
C.120
D.140

【答案】D
【解析】解:自習時間不少于22.5小時的頻率為:(0.16+0.08+0.04)×2.5=0.7,故自習時間不少于22.5小時的頻率為:0.7×200=140,
故選:D
根據(jù)已知中的頻率分布直方圖,先計算出自習時間不少于22.5小時的頻率,進而可得自習時間不少于22.5小時的頻數(shù).;本題考查的知識點是頻率分布直方圖,難度不大,屬于基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知是數(shù)列的前n項和,并且,對任意正整數(shù)n, ;設

.

(Ⅰ) 證明:數(shù)列是等比數(shù)列,并求的通項公式;

(Ⅱ) 設,求證: 數(shù)列不可能為等比數(shù)列。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A、B是單位圓O上的兩點(O為圓心),∠AOB=120°,點C是線段AB上不與A、B重合的動點.MN是圓O的一條直徑,則的取值范圍是( )

A. [,0) B. [,0] C. [,1) D. [,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某化工廠生產甲、乙兩種混合肥料,需要A,B,C三種主要原料,生產1扯皮甲種肥料和生產1車皮乙種肥料所需三種原料的噸數(shù)如表所示:

配料 原料

A

B

C

4

8

3

5

5

10

現(xiàn)有A種原料200噸,B種原料360噸,C種原料300噸,在此基礎上生產甲、乙兩種肥料.已知生產1車皮甲種肥料,產生的利潤為2萬元;生產1車品乙種肥料,產生的利潤為3萬元、分別用x,y表示計劃生產甲、乙兩種肥料的車皮數(shù).
(1)用x,y列出滿足生產條件的數(shù)學關系式,并畫出相應的平面區(qū)域;
(2)問分別生產甲、乙兩種肥料,求出此最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

已知函數(shù)=(sin x+cos x)2+cos 2x.

(1)求函數(shù)的最小正周期;

(2)求函數(shù)在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】漳州市博物館為了保護一件珍貴文物,需要在館內一種透明又密封的長方體玻璃保護罩內充入保護液體.該博物館需要支付的總費用由兩部分組成:①罩內該種液體的體積比保護罩的容積少0.5立方米,且每立方米液體費用500元;②需支付一定的保險費用,且支付的保險費用與保護罩容積成反比,當容積為2立方米時,支付的保險費用為4000元.

(Ⅰ)求該博物館支付總費用與保護罩容積之間的函數(shù)關系式;

(Ⅱ)求該博物館支付總費用的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三個頂點坐標分別為:直線經過點

(1)外接圓的方程

(2)若直線相交于兩點,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線與拋物線相交于兩點.

(1)求證:“如果直線過點,那么”是真命題;

(2)寫出(1)中命題的逆命題,判斷它是真命題還是假命題,并說明理由.

查看答案和解析>>

同步練習冊答案