已知公比為q(0<q<1)的無(wú)窮等比數(shù)列{an}各項(xiàng)的和為9,無(wú)窮等比數(shù)列{a}各項(xiàng)的和為

(Ⅰ)求數(shù)列{an}的首項(xiàng)a1和公比q;

(Ⅱ)對(duì)給定的k(k=1,2,3,…,n),設(shè)T(k)是首項(xiàng)為ak,公差為2ak-1的等差數(shù)列,求T(2)的前10項(xiàng)之和;

(Ⅲ)設(shè)bi為數(shù)列T(k)的第i項(xiàng),Sn=b1+b2+…+bn,求Sn,并求正整數(shù)m(m>1),使得存在且不等于零.(注:無(wú)窮等比數(shù)列各項(xiàng)的和即當(dāng)n→∞時(shí)該無(wú)窮等比數(shù)列前n項(xiàng)和的極限)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

(2006廣東,19)已知公比為q(0q1)的無(wú)窮等比數(shù)列各項(xiàng)的和為9,無(wú)窮等比數(shù)列各項(xiàng)的和為

(1)求數(shù)列的首項(xiàng)和公比q;

(2)對(duì)給定的k(k=1,2,…,n),設(shè)是首項(xiàng)為,公差為的等差數(shù)列.求數(shù)列的前10項(xiàng)之和;

(3)設(shè)為數(shù)列的第i項(xiàng),,求,并求正整數(shù)m(m1),使得存在且不等于零.

(注:無(wú)窮等比數(shù)列各項(xiàng)的和即當(dāng)時(shí)該無(wú)窮等比數(shù)列前n項(xiàng)和的極限)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:廣東省高考真題 題型:解答題

已知公比為q(0<q<1)的無(wú)窮等比數(shù)列{an}各項(xiàng)的和為9,無(wú)窮等比數(shù)列{an2}各項(xiàng)的和為
(Ⅰ)求數(shù)列{an}的首項(xiàng)a1和公比q;
(Ⅱ)對(duì)給定的k(k=1,2,3,…,n),設(shè)T(k)是首項(xiàng)為ak,公差為2ak-1的等差數(shù)列。求數(shù)列T(2)的前10項(xiàng)之和;
(Ⅲ)設(shè)bi為數(shù)列T(i)的第i項(xiàng),Sn=b1+b2+…+bn,求Sn,并求正整數(shù)m(m>1),使得存在且不等于零。
(注:無(wú)窮等比數(shù)列各項(xiàng)的和即當(dāng)n→∞時(shí)該無(wú)窮數(shù)列前n項(xiàng)和的極限)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知公比為q(0<q<1)的無(wú)窮等比數(shù)列{an}各項(xiàng)的和為9,無(wú)窮等比數(shù)列{a2n}各項(xiàng)的和為.

(1)求數(shù)列{an}的首項(xiàng)a1和公比q;

(2)對(duì)給定的k(k=1,2,…,n),設(shè)T(k)是首項(xiàng)為ak,公差為2ak-1的等差數(shù)列,求數(shù)列T(2)的前10項(xiàng)之和;

(3)設(shè)bi為數(shù)列T(i)的第i項(xiàng),Sn=b1+b2+…+bn,求Sn,并求正整數(shù)m(m>1),使得存在且不等于零.

(注:無(wú)窮等比數(shù)列各項(xiàng)的和即當(dāng)n→∞時(shí)該無(wú)窮等比數(shù)列前n項(xiàng)和的極限)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

19.

已知公比為q(0<q<1)的無(wú)窮等比數(shù)列{an}各項(xiàng)的和為9,無(wú)窮等比數(shù)列{an2}各項(xiàng)的和為。

(Ⅰ)求數(shù)列{an}的首項(xiàng)a1和公比q:

(Ⅱ)對(duì)給定的k(k=1,2,…,n),設(shè)T{k}是首項(xiàng)為ak,公差為2ak-1的等差數(shù)列,求數(shù)列T{2}的前10項(xiàng)之和:

(Ⅲ)設(shè)bi為數(shù)列的第i項(xiàng),sn=b1+b2+…+bn,求sn,并求正整數(shù)m(m>1),使得存在且不等于零。

(注:無(wú)窮等比數(shù)列各項(xiàng)的和即當(dāng)n時(shí)該無(wú)窮等比數(shù)列前n項(xiàng)和的極限)

查看答案和解析>>

同步練習(xí)冊(cè)答案