科目:高中數(shù)學 來源: 題型:解答題
如圖1,在△ABC中,點P為BC邊中點,直線a繞頂點A旋轉,若點B,P在直線a的異側,BM⊥直線a于點M.CN⊥直線a于點N,連接PM,PN.
(1)延長MP交CN于點E(如圖2).
①求證:△BPM≌△CPE;
②求證:PM=PN;
(2)若直線a繞點A旋轉到圖3的位置時,點B,P在直線a的同側,其它條件不變,此時PM=PN還成立嗎?若成立,請給予證明;若不成立,請說明理由;
(3)若直線a繞點A旋轉到與BC邊平行的位置時,其它條件不變,請直接判斷四邊形MBCN的形狀及此時PM=PN還成立嗎?不必說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分10分)選修4—1:幾何證明選講
如圖,已知,過頂點A的圓與邊BC切于BC的中點P,與邊AB、AC分別交于點M、N,且CN=2BM,點N平分AC。求證:AM=7BM。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
.(12分)
如圖,△ABC內接于⊙O,過點A的直線交⊙O于點P,交BC的延長線于點D,
且AB2=AP·AD
(1)求證:AB=AC;
(2)如果∠ABC=60°,⊙O的半徑為1,且P為弧AC的中點,求AD的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分10分)選修4—1:幾何證明選講
如圖,AB是⊙O的直徑,弦BD、CA的延長線相交于
點E,EF垂直BA的延長線于點F. 求證:
(Ⅰ);
(Ⅱ)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分) 設矩形ABCD(AB>AD)的周長為12,把它關于AC折起來,AB折過去以后,交CD于點P,求△ADP的面積的最大值及此時AB邊的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)如圖,已知四邊形ABCD是等腰梯形,E、F分別是腰AD、BC的中點,M、N在線段EF上且EM=MN=NF,下底是上底的2倍,若,求
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com