已知上的可導(dǎo)函數(shù),當(dāng)時(shí),,則關(guān)于的函數(shù)的零點(diǎn)個(gè)數(shù)為(  。
A.1B.2C.0D.0或2
C

試題分析:令,令,又,所以當(dāng)時(shí),;當(dāng)時(shí),;所以函數(shù)上單調(diào)遞減,在上單調(diào)遞增,于是,所以方程無實(shí)根,即的零點(diǎn)個(gè)數(shù)為 
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知為奇函數(shù),且當(dāng)時(shí),.當(dāng)時(shí),的最大值為,最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

有一座大橋既是交通擁擠地段,又是事故多發(fā)地段,為了保證安全,交通部門規(guī)定.大橋上的車距與車速和車長的關(guān)系滿足:為正的常數(shù)),假定車身長為,當(dāng)車速為時(shí),車距為2.66個(gè)車身長.
寫出車距關(guān)于車速的函數(shù)關(guān)系式;
應(yīng)規(guī)定怎樣的車速,才能使大橋上每小時(shí)通過的車輛最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)的定義域和值域都是),則常數(shù)的取值范圍是     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知平面上的線段及點(diǎn),任取上的一點(diǎn),線段長度的最小值稱為點(diǎn)到線段的距離,記為.設(shè),,,,,,若滿足,則關(guān)于的函數(shù)解析式為       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù) ,給出下列命題:
(1)必是偶函數(shù);
(2)當(dāng)時(shí),的圖象關(guān)于直線對(duì)稱;
(3)若,則在區(qū)間上是增函數(shù);
(4)有最大值.
其中正確的命題序號(hào)是(     )
A.(3)B.(2)(3)C.(3)(4)D.(1)(2)(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

記實(shí)數(shù)中的最大數(shù)為max{} , 最小數(shù)為min{}則max{min{}}=   (   )
A.B.1 C.3D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020351707518.png" style="vertical-align:middle;" />,且.設(shè)點(diǎn)是函數(shù)圖像上的任意一點(diǎn),過點(diǎn)分別作直線軸的垂線,垂足分別為

(1)寫出的單調(diào)遞減區(qū)間(不必證明);
(2)問:是否為定值?若是,則求出該定值,若不是,則說明理由;
(3)設(shè)為坐標(biāo)原點(diǎn),求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知,則的值等于           

查看答案和解析>>

同步練習(xí)冊(cè)答案