(本小題滿分12分)

某中學共有1000名學生參加了該地區(qū)高三第一次質(zhì)量檢測的數(shù)學考試,數(shù)學成績?nèi)缦卤硭荆?/p>

數(shù)學成績分組

人數(shù)

60

90

300

x

160

   (I)為了了解同學們前段復習的得失,以便制定下階段的復習計劃,學校將采用分層抽

樣的方法抽取100名同學進行問卷調(diào)查,甲同學在本次測試中數(shù)學成績?yōu)?5分,

求他被抽中的概率;

   (II)已知本次數(shù)學成績的優(yōu)秀線為110分,試根據(jù)所提供數(shù)據(jù)估計該中學達到優(yōu)秀線的人數(shù);

   (III)作出頻率分布直方圖,并估計該學校本次考試的數(shù)學平均分。

 

 

【答案】

【解析】

解:⑴分層抽樣中,每個個體被抽到的概率均為,………… 2分

故甲同學被抽到的概率. ………………………………………3分

⑵由題意.  …………………………4分

故估計該中學達到優(yōu)秀線的人數(shù)(人). 6分

⑶頻率分布直方圖. ………………3分

 

 

 

 

 

 

 

 

該學校本次考試數(shù)學平均分

        

估計該學校本次考試的數(shù)學平均分為90分. ……… 12分

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產(chǎn)業(yè)建設工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設.求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預測,A產(chǎn)品的利潤與投資成正比,其關系如圖1,B產(chǎn)品的利潤與投資的算術平方根成正比,其關系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習冊答案