在等差數(shù)列中,,其前n項(xiàng)和為,等比數(shù)列的各項(xiàng)均為正數(shù),,公比為q,且,.
(1)求與;
(2)設(shè)數(shù)列滿足,求的前n項(xiàng)和.
(1),;(2).
解析試題分析:本題主要考查等差數(shù)列的通項(xiàng)公式、等比數(shù)列的通項(xiàng)公式、等差數(shù)列的前n項(xiàng)和公式、裂項(xiàng)相消法求和等數(shù)學(xué)知識(shí),考查學(xué)生的計(jì)算能力和分析問題的能力.第一問,利用等比數(shù)列的通項(xiàng)公式和等差數(shù)列的前n項(xiàng)和公式將已知表達(dá)式展開,求出和,從而求出等差數(shù)列、等比數(shù)列的通項(xiàng)公式;第二問,利用等差數(shù)列的前n項(xiàng)和公式先求出,得到進(jìn)行裂項(xiàng),用裂項(xiàng)相消法求數(shù)列的前n項(xiàng)和.
試題解析:(1)設(shè)的公差為.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a2/d/si67f1.png" style="vertical-align:middle;" />所以 3分
解得 或(舍),
故 ,. 6分
(2)由(1)可知,, 7分
所以. 9分
故 12分
考點(diǎn):1.等差數(shù)列、等比數(shù)列的通項(xiàng)公式;2.等差數(shù)列的前n項(xiàng)和公式;3.裂項(xiàng)相消法求和.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列{an}滿足:an+1>an(n∈N*),a1=1,該數(shù)列的前三項(xiàng)分別加上1,1,3后順次成為等比數(shù)列{bn}的前三項(xiàng).
(1)分別求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)設(shè)Tn=(n∈N*),若Tn+<c(c∈Z)恒成立,求c的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在等差數(shù)列{an}中,a1=3,其前n項(xiàng)和為Sn,等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,公比為q,且b2+S2=12,q=.
(1)求an與bn.
(2)證明:≤++…+<.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列(常數(shù)),其前項(xiàng)和為 ()
(1)求數(shù)列的首項(xiàng),并判斷是否為等差數(shù)列,若是求其通項(xiàng)公式,不是,說明理由;
(2)令的前n項(xiàng)和,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an2=4Sn-2an-1(n∈N*),其中Sn為{an}的前n項(xiàng)和.
(1)求a1,a2的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)是否存在正整數(shù)m、n,使得向量a=(2an+2,m)與向量b=(-an+5,3+an)垂直?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列的前項(xiàng)和為.
(1)請寫出數(shù)列的前項(xiàng)和公式,并推導(dǎo)其公式;
(2)若,數(shù)列的前項(xiàng)和為,求的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列{an}滿足a2=0,a6+a8=-10.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列{an}的各項(xiàng)都是正數(shù),且對(duì)任意n∈N*,都有+…+=,記Sn為數(shù)列{an}的前n項(xiàng)和.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=3n+(-1)n-1λ·2an(λ為非零常數(shù),n∈N*),問是否存在整數(shù)λ,使得對(duì)任意n∈N*,都有bn+1>bn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列,滿足,,
(1)已知,求數(shù)列所滿足的通項(xiàng)公式;
(2)求數(shù)列 的通項(xiàng)公式;
(3)己知,設(shè)=,常數(shù),若數(shù)列是等差數(shù)列,記,求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com