已知動點與定點的距離和它到直線的距離之比是常數(shù),記的軌跡為曲線.
(I)求曲線的方程;
(II)設(shè)直線與曲線交于兩點,點關(guān)于軸的對稱點為,試問:當變化時,直線與軸是否交于一個定點?若是,請寫出定點的坐標,并證明你的結(jié)論;若不是,請說明理由.
(I);(II)對于任意的,直線與軸交于定點.
解析試題分析:(I)找出題中的相等關(guān)系,列出,化簡即得曲線的方程;(II)將直線方程代入曲線方程,消去得,記,則,且.特別地,令,則.此時,直線與軸的交點為.若直線與軸交于一個定點,則定點只能為.再證明對于任意的,直線與軸交于定點,可利用直線的兩點式方程結(jié)合分析法.
試題解析:(I)設(shè)是點到直線的距離,根據(jù)題意,點的軌跡就是集合
由此得
將上式兩邊平方,并化簡得
即,所以曲線的方程為
(II)由得,即.
記,
則,且.
特別地,令,則.
此時,直線與軸的交點為.
若直線與軸交于一個定點,則定點只能為.
以下證明對于任意的,直線與軸交于定點.
事實上,經(jīng)過點的直線方程為.
令,得只需證,
即證,即證.
因為,
所以成立.
這說明,當變化時,直線
科目:高中數(shù)學 來源: 題型:解答題
給定圓:及拋物線:,過圓心作直線,此直線與上述兩曲線的四個交點,自上而下順次記為,如果線段的長按此順序構(gòu)成一個等差數(shù)列,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的離心率為,以原點為圓心,橢圓的短半軸為半徑的圓與直線相切,直線與橢圓C相交于A、B兩點.
(1)求橢圓C的方程;(2)求的取值范圍;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C:的離心率為,
直線:y=x+2與原點為圓心,以橢圓C的短軸長為直
徑的圓相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點的直線與橢圓交于,兩點.設(shè)直線的斜率,在軸上是否存在點,使得是以GH為底邊的等腰三角形. 如果存在,求出實數(shù)的取值范圍,如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知、分別是橢圓: 的左、右焦點,點在直線上,線段的垂直平分線經(jīng)過點.直線與橢圓交于不同的兩點、,且橢圓上存在點,使,其中是坐標原點,是實數(shù).
(Ⅰ)求的取值范圍;
(Ⅱ)當取何值時,的面積最大?最大面積等于多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的離心率為,且經(jīng)過點.
(Ⅰ)求橢圓的方程;
(Ⅱ)如果過點的直線與橢圓交于兩點(點與點不重合),
①求的值;
②當為等腰直角三角形時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系中,點為動點,分別為橢圓的左右焦點.已知△為等腰三角形.(1)求橢圓的離心率;(2)設(shè)直線與橢圓相交于兩點,是直線上的點,滿足,求點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖所示:已知過拋物線的焦點F的直線與拋物線相交于A,B兩點。
(1)求證:以AF為直徑的圓與x軸相切;
(2)設(shè)拋物線在A,B兩點處的切線的交點為M,若點M的橫坐標為2,求△ABM的外接圓方程;
(3)設(shè)過拋物線焦點F的直線與橢圓的交點為C、D,是否存在直線使得,若存在,求出直線的方程,若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com