已知函數(shù),且函數(shù)f(x)的最小正周期為π.
(1)若,求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)將函數(shù)y=f(x)的圖象上各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)縮短到原來的,把所得到的圖象再向左平移個單位,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在區(qū)間上的最小值.
【答案】分析:(1)利用三角函數(shù)的降次公式進(jìn)行化簡,得f(x)=2sin(2ωx+),根據(jù)函數(shù)y=Asin(ωx+φ)的周期的公式,計算出ω的值,得到函數(shù)的表達(dá)式,最后根據(jù)函數(shù)函數(shù)y=Asin(ωx+φ)的單調(diào)區(qū)間的結(jié)論,可以求得函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換的規(guī)律,得到變換后函數(shù)y=g(x)的解析式是:g(x)=2sin(4x+),然后根據(jù)函數(shù)y=Asin(ωx+φ)的單調(diào)性的結(jié)論,可得函數(shù)g(x)在區(qū)間上的值域,從而得到y(tǒng)=g(x)在區(qū)間上的最小值.
解答:解:(1)∵
∴利用三角函數(shù)的降次公式,得f(x)=sin(2ωx)+cos(2ωx)=2sin(2ωx+
∵函數(shù)f(x)的最小正周期為T=
∴2ω=2,可得函數(shù)f(x)的解析式為:y=2sin(2x+
<2x+,得+kπ<x<+kπ,其中k是整數(shù),
,
∴取k=0,得x∈
所以函數(shù)f(x)的單調(diào)遞減區(qū)間是
(2)函數(shù)y=f(x)的圖象上各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)縮短到原來的,
所得函數(shù)解析式為:y=2sin(4x+
再把所得到的圖象再向左平移個單位,得到函數(shù)y=g(x)的圖象,
∴g(x)=2sin[4(x+)+]=2sin(4x+
∵函數(shù)y=g(x)定義在區(qū)間上,
∴4x+∈[,]⇒sin≤sin(4x+)≤sin
即-≤sin(4x+)≤
∴函數(shù)y=g(x)的值域為[-,1],函數(shù)的最小值為-
點(diǎn)評:本題以一個特殊的三角函數(shù)為例加以研究,著重考查了三角函數(shù)中的恒等變換、函數(shù)y=Asin(ωx+φ)的圖象和性質(zhì)和三角函數(shù)的最值等知識點(diǎn),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

例4、已知函數(shù)y=f(x)是定義在R上的周期函數(shù),周期T=5,函數(shù)y=f(x)(-1≤x≤1)是奇函數(shù).又知y=f(x)在[0,1]上是一次函數(shù),在[1,4]上是二次函數(shù),且在x=2時函數(shù)取得最小值-5.
①證明:f(1)+f(4)=0;②求y=f(x),x∈[1,4]的解析式;③求y=f(x)在[4,9]上的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+ax+b(a>0,b∈R),x∈R
(1)若-1為f(x)=0的一個根,且函數(shù)f(x)的值域為[-4,+∞),求f(x)的解析式;
(2)在(1)的條件下,當(dāng)x∈[-2,2]時,h(x)=f(x)-kx是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
ax3+  
1
2
bx2+cx

(1)若函數(shù)f(x)有三個零點(diǎn)x1,x2,x3,且x1+x2+x3=
9
2
,x
1
x3=-12
,且a>0,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(1)=-
1
2
a
,且3a>2c>2b,試問:導(dǎo)函數(shù)f(x)在區(qū)間(0,2)內(nèi)是否有零點(diǎn),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•房山區(qū)一模)已知函數(shù)f(x)的定義域是D,若對于任意x1,x2∈D,當(dāng)x1<x2時,都有f(x1)≤f(x2),則稱函數(shù)f(x)在D上為非減函數(shù).設(shè)函數(shù)f(x)在[0,1]上為非減函數(shù),且滿足以下三個條件:①f(0)=0;  ②f(
x
5
)=
1
2
f(x);  ③f(1-x)=1-f(x).則f(
4
5
)=
1
2
1
2
,f(
1
2013
)=
1
32
1
32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•房山區(qū)一模)已知函數(shù)f(x)的定義域是D,若對于任意x1,x2∈D,當(dāng)x1<x2時,都有f(x1)≤f(x2),則稱函數(shù)f(x)在D上為非減函數(shù).設(shè)函數(shù)f(x)在[0,1]上為非減函數(shù),且滿足以下三個條件:
①f(0)=0;  
f(
x
5
)=
1
2
f(x)
;  
③f(1-x)=1-f(x).
f(
4
5
)
=
1
2
1
2
,f(
1
12
)
=
1
4
1
4

查看答案和解析>>

同步練習(xí)冊答案