精英家教網 > 高中數學 > 題目詳情

(本小題滿分12分)

函數f(x) = sinωxcosωx + sin2ωx +  ,其圖像相鄰兩條對稱軸之間的距離為

(Ⅰ)求ω的值;

(Ⅱ) 若A為△ABC的內角,且f  = ,求A的值.

 

【答案】

(Ⅰ)f(x) = sin+ 1;(2)A =

【解析】

試題分析:(1)將f(x)解析式第一項利用二倍角的余弦函數公式化簡,第二項第二個因式利用誘導公式變形,再利用二倍角的正弦函數公式化簡,整理后再利用兩角和與差的正弦函數公式化為一個角的正弦函數,由y=f(x)的圖象相鄰兩條對稱軸之間的距離為 ,得到f(x)的周期為π,利用周期公式求出ω的值.確定出f(x)的解析式.

(2)由f  = sin+ 1 =     ∴sin= ,再結合A∈(0,π),可得A = .

(Ⅰ)f(x) = sin2ωx +  +

= sin2ωx cos2ωx + 1 = sin+ 1

∵函數圖像的相鄰兩條對稱軸之間的距離為 ,∴最小正周期T = π

 = π,ω = 1.

∴f(x) = sin+ 1

(2) ∵f  = sin+ 1 =     ∴sin=  

∵ A∈(0,π)  ∴ −  < A  <  

∴ A  =  ,故A =

考點:考查了三角誘導公式及三角函數的圖像及性質,給值求角等知識.

點評:掌握三角誘導公式是化簡的基礎,再求解的過程中要注意角的范圍,本小題同時還考查了三角函數的圖像及三角函數的性質,屬于容易題.

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(文) (本小題滿分12分已知函數y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數的值域和最小正周期;
(2)求函數的遞減區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分12分)已知函數,且。①求的最大值及最小值;②求的在定義域上的單調區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產業(yè)建設工程三類,這三類工程所含項目的個數分別占總數的、.現有3名工人獨立地從中任選一個項目參與建設.求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產A,B兩種產品,根據市場調查和預測,A產品的利潤與投資成正比,其關系如圖1,B產品的利潤與投資的算術平方根成正比,其關系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產品的利潤表示為投資的函數,并寫出它們的函數關系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習冊答案