已知
1+sinα
cosα
=-
1
2
,則
cosα
sinα-1
=
 
分析:考查已知條件和要求的表達(dá)式,不難得到結(jié)果.
解答:解:因為1-sin2x=cos2x,所以
1+sinα
cosα
cosα
1-sinα
  又因為
1+sinα
cosα
=-
1
2
=
cosα
1-sinα
,所以
cosα
sinα-1
=
1
2

故答案為:
1
2
點評:本題是基礎(chǔ)題,考查同角三角函數(shù)的基本關(guān)系式的應(yīng)用,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.解答應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,CP是圓O的切線,P為切點,直線CO交圓O于A,B兩點,AD⊥CP,垂足為D.
求證:∠DAP=∠BAP.
B.選修4-2:矩陣與變換
設(shè)a>0,b>0,若矩陣A=
.
a0
0b
.
把圓C:x2+y2=1變換為橢圓E:
x2
4
+
y2
3
=1.
(1)求a,b的值;(2)求矩陣A的逆矩陣A-1
C.選修4-4:坐標(biāo)系與參數(shù)方程在極坐標(biāo)系中,已知圓C:ρ=4cosθ被直線l:ρsin(θ-\frac{π}{6})=a截得的弦長為2
3
求實數(shù)a的值.
D.選修4-5:不等式選講已知a,b是正數(shù),求證:a2+4b2+
1
ab
≥4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省南京市高三(上)學(xué)情調(diào)研數(shù)學(xué)試卷(二)(解析版) 題型:解答題

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.解答應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,CP是圓O的切線,P為切點,直線CO交圓O于A,B兩點,AD⊥CP,垂足為D.
求證:∠DAP=∠BAP.
B.選修4-2:矩陣與變換
設(shè)a>0,b>0,若矩陣A=把圓C:x2+y2=1變換為橢圓E:=1.
(1)求a,b的值;(2)求矩陣A的逆矩陣A-1
C.選修4-4:坐標(biāo)系與參數(shù)方程在極坐標(biāo)系中,已知圓C:ρ=4cosθ被直線l:ρsin(θ-\frac{π}{6})=a截得的弦長為2求實數(shù)a的值.
D.選修4-5:不等式選講已知a,b是正數(shù),求證:a2+4b2≥4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省南京市金陵中學(xué)高三(上)學(xué)情調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.解答應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,CP是圓O的切線,P為切點,直線CO交圓O于A,B兩點,AD⊥CP,垂足為D.
求證:∠DAP=∠BAP.
B.選修4-2:矩陣與變換
設(shè)a>0,b>0,若矩陣A=把圓C:x2+y2=1變換為橢圓E:=1.
(1)求a,b的值;(2)求矩陣A的逆矩陣A-1
C.選修4-4:坐標(biāo)系與參數(shù)方程在極坐標(biāo)系中,已知圓C:ρ=4cosθ被直線l:ρsin(θ-\frac{π}{6})=a截得的弦長為2求實數(shù)a的值.
D.選修4-5:不等式選講已知a,b是正數(shù),求證:a2+4b2≥4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省南京市高三(上)學(xué)情調(diào)研數(shù)學(xué)試卷(二)(解析版) 題型:解答題

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.解答應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,CP是圓O的切線,P為切點,直線CO交圓O于A,B兩點,AD⊥CP,垂足為D.
求證:∠DAP=∠BAP.
B.選修4-2:矩陣與變換
設(shè)a>0,b>0,若矩陣A=把圓C:x2+y2=1變換為橢圓E:=1.
(1)求a,b的值;(2)求矩陣A的逆矩陣A-1
C.選修4-4:坐標(biāo)系與參數(shù)方程在極坐標(biāo)系中,已知圓C:ρ=4cosθ被直線l:ρsin(θ-\frac{π}{6})=a截得的弦長為2求實數(shù)a的值.
D.選修4-5:不等式選講已知a,b是正數(shù),求證:a2+4b2≥4.

查看答案和解析>>

同步練習(xí)冊答案