在△ABC中,角A、B、C的對(duì)邊分別為a、b、c.已知數(shù)學(xué)公式,a+b=5,c=數(shù)學(xué)公式,則△ABC的面積為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
B
分析:把已知等式左邊第一項(xiàng)與第二項(xiàng)分別利用二倍角的余弦函數(shù)公式化簡(jiǎn),再由誘導(dǎo)公式及三角形的內(nèi)角和定理得到cos(A+B)=-cosC,代入化簡(jiǎn)后的式子中,得到關(guān)于cosC的方程,求出方程的解得到cosC的值,由C為三角形的內(nèi)角,利用特殊角的三角函數(shù)值求出C的度數(shù),然后由余弦定理得到c2=a2+b2-2abcosC,利用完全平方公式變形后,將c,a+b及cosC的值代入,求出ab的值,由ab,sinC的值,利用三角形的面積公式即可求出三角形ABC的面積.
解答:∵
∴2[1-cos(A+B)]-2cos2C+1=
又cos(A+B)=-cosC,
∴2(1+cosC)-2cos2C+1=,
整理得:(2cosC-1)2=0,
解得:cosC=,
又C為三角形的內(nèi)角,
∴C=60°,又a+b=5,c=,
由余弦定理得:c2=a2+b2-2abcosC=(a+b)2-3ab,
即7=25-3ab,解得:ab=6,
則△ABC的面積S=absinC=
故選B
點(diǎn)評(píng):此題屬于解三角形的題型,涉及的知識(shí)有:二倍角的余弦函數(shù)公式,誘導(dǎo)公式,余弦定理,三角形的面積公式,以及特殊角的三角函數(shù)值,熟練掌握公式及定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關(guān)系一定不成立的是( 。
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D為BC的中點(diǎn),求△ABC的面積及AD的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)邊的長(zhǎng)分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案