已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若在內(nèi)恒成立,求實(shí)數(shù)的取值范圍.
(Ⅲ),求證:.
(Ⅰ)當(dāng)時(shí),在單調(diào)遞減,在上單調(diào)遞增;
當(dāng)時(shí),在單調(diào)遞減,在,上單調(diào)遞增;
當(dāng)時(shí),在上單調(diào)遞增;
當(dāng)時(shí),在單調(diào)遞減, 在,上單調(diào)遞增;
(Ⅱ)
(Ⅲ)詳見解析
解析試題分析:(Ⅰ)利用導(dǎo)數(shù)的符號(hào)確定函數(shù)的單調(diào)區(qū)間。函數(shù)含有參數(shù),故需要分情況討論.
(Ⅱ)思路一、一般地若任意使得,則;若任意使得,則.由得:恒成立,所以小于等于的最小值.
思路二、除外,是的一個(gè)極值點(diǎn),故可首先考慮這個(gè)特殊值.由得: ,這樣只需考慮時(shí)在內(nèi)是否恒成立.這是本題的特點(diǎn),需要仔細(xì)觀察、分析.若發(fā)現(xiàn)其特點(diǎn),則運(yùn)算大大簡化.所以這個(gè)題有較好的區(qū)分度.
(Ⅲ)涉及數(shù)列求和的不等式的證明,一般有兩種類型,一種是先求和,后放縮;一種先放縮,后求和.
本題顯然屬于后者.
解答題中的最后一問,往往要用前面的結(jié)論,本題也不例外.由(Ⅱ)取可得:,由此可將不等式左邊各項(xiàng)放縮.
但是如果第一項(xiàng)也用這個(gè)結(jié)論來放縮,則得不到右邊的式子.這時(shí)就考慮從第二項(xiàng)開始,或從第三項(xiàng)開始用這個(gè)結(jié)論.
試題解析:(Ⅰ)
當(dāng)時(shí),在單調(diào)遞減,在上單調(diào)遞增;
當(dāng)時(shí),在單調(diào)遞減,在,上單調(diào)遞增;
當(dāng)時(shí),在上單調(diào)遞增;
當(dāng)時(shí),在單調(diào)遞減, 在,上單調(diào)遞增.
(Ⅱ)法一、由得:
令,則
令,則即
所以由得
所以在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增.所以
從而
法二、由得:
又時(shí), 在單調(diào)遞減,在上單調(diào)遞增
所以即:
所以若在內(nèi)恒成立,實(shí)數(shù)的取值范圍為.
(Ⅲ)由(Ⅱ)知: 又時(shí), 即(時(shí)取等號(hào))
所以當(dāng)時(shí):
又,所以
.
考點(diǎn):本題考查函數(shù)的導(dǎo)數(shù)、導(dǎo)數(shù)的應(yīng)用及不等式的證明.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(Ⅰ)設(shè)為函數(shù)的極值點(diǎn),求證: ;
(Ⅱ)若當(dāng)時(shí),恒成立,求正整數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),設(shè)曲線在與軸交點(diǎn)處的切線為,為的導(dǎo)函數(shù),滿足.
(1)求;
(2)設(shè),,求函數(shù)在上的最大值;
(3)設(shè),若對(duì)于一切,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,將一矩形花壇擴(kuò)建成一個(gè)更大的矩形花壇,要求在的延長線上,在的延長線上,且對(duì)角線過點(diǎn).已知米,米。
(1)設(shè)(單位:米),要使花壇的面積大于32平方米,求的取值范圍;
(2)若(單位:米),則當(dāng),的長度分別是多少時(shí),花壇的面積最大?并求出最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中.
(1)若時(shí),記存在使
成立,求實(shí)數(shù)的取值范圍;
(2)若在上存在最大值和最小值,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù) (R),且該函數(shù)曲線在處的切線與軸平行.
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)證明:當(dāng)時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是的一個(gè)極值點(diǎn).
(Ⅰ) 求的值;
(Ⅱ) 求函數(shù)的單調(diào)遞減區(qū)間;
(Ⅲ)設(shè),試問過點(diǎn)可作多少條直線與曲線相切?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若函數(shù)的圖象在處的切線斜率為,求實(shí)數(shù)的值;
(2)在(1)的條件下,求函數(shù)的單調(diào)區(qū)間;
(3)若函數(shù)在上是減函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(為常數(shù)),且在點(diǎn)處的切線平行于軸.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com