已知向量
a
=(Asinωx,Acosωx),
b
=(cosθ,sinθ),f(x)=
a
b
+1,其中A>0、ω>0、θ為銳角.f(x)的圖象的兩個(gè)相鄰對(duì)稱(chēng)中心的距離為
π
2
,且當(dāng)x=
π
12
時(shí),f(x)取得最大值3.
(I)求f(x)的解析式;  
(II)將f(x)的圖象先向下平移1個(gè)單位,再向左平移?(?>0)個(gè)單位得g(x)的圖象,若g(x)為奇函數(shù),求?的最小值.
(Ⅰ)∵
a
=(Asinωx,Acosωx),
b
=(cosθ,sinθ),
∴f(x)=
a
b
+1=Asinωxcosθ+Acosωxsinθ+1
=Asin(ωx+θ)+1,
因?yàn)閒(x)的圖象的兩個(gè)相鄰對(duì)稱(chēng)中心的距離為
π
2
,且當(dāng)x=
π
12
時(shí),f(x)取得最大值3.
所以A=2,T=
w
,解得ω=2,故f(x)=2sin(2x+θ)+1,
由f(
π
12
)=2sin(2×
π
12
+θ)+1=3,解得θ=
π
3

故f(x)的解析式為:f(x)=2sin(2x+
π
3
)+1
(Ⅱ)由(Ⅰ)可知:將f(x)的圖象先向下平移1個(gè)單位得函數(shù)y=2sin(2x+
π
3
)的圖象,
再向左平移?(?>0)個(gè)單位得g(x)的圖象,則g(x)=2sin[2(x+?)+
π
3
],若g(x)為奇函數(shù),
則g(0)=2sin(2?+
π
3
),即2?+
π
3
=kπ,(k∈Z),又?>0,故?的最小值為
π
3
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•大連二模)已知向量
a
,
b
滿足
a
=(-2sinx,
3
cosx+
3
sinx),
b
=(cosx,cosx-sinx),函數(shù),f(x)=
a
b
(x∈R).
(I)將f(x)化成Asin((ωx+φ)(A>0,ω>0,|φ|<π的形式;
(Ⅱ)已知數(shù)列an=
n
2
 
f(
2
-
11π
24
)(n∈N*)
,求{an}的前2n項(xiàng)和S2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•濰坊二模)已知向量
a
=(Asinωx,Acosωx),
b
=(cosθ,sinθ),f(x)=
a
b
+1,其中A>0、ω>0、θ為銳角.f(x)的圖象的兩個(gè)相鄰對(duì)稱(chēng)中心的距離為
π
2
,且當(dāng)x=
π
12
時(shí),f(x)取得最大值3.
(I)求f(x)的解析式;  
(II)將f(x)的圖象先向下平移1個(gè)單位,再向左平移?(?>0)個(gè)單位得g(x)的圖象,若g(x)為奇函數(shù),求?的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(sin
x
3
,
3
cos
x
3
),
b
=(1,1)
,函數(shù)f(x)=
a
b
cos
x
3

(1)將f(x)寫(xiě)成Asin(ωx+φ)+B的形式,并求其圖象的對(duì)稱(chēng)中心;
(2)如果△ABC的三邊a、b、c滿足b2=ac,且邊b所對(duì)的角為x,試求x的取值范圍及此時(shí)函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知向量
a
=(sin
x
3
,
3
cos
x
3
),
b
=(1,1)
,函數(shù)f(x)=
a
b
cos
x
3

(1)將f(x)寫(xiě)成Asin(ωx+φ)+B的形式,并求其圖象的對(duì)稱(chēng)中心;
(2)如果△ABC的三邊a、b、c滿足b2=ac,且邊b所對(duì)的角為x,試求x的取值范圍及此時(shí)函數(shù)f(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案