如圖,在三棱錐P -ABC中,點P在平面ABC上的射影D是AC的中點.BC ="2AC=8,AB" =
(I )證明:平面PBC丄平面PAC
(II)若PD =,求二面角A-PB-C的平面角的余弦值.
(I) 通過證明AC⊥BC,進而證明BC⊥平面PAC,從而得證;
(II)
解析試題分析:
(Ⅰ)證明:點在平面上的射影是的中點,
PD⊥平面ABC,PD平面PAC
平面PAC⊥平面ABC ……2分
BC=2AC=8,AB=4
,故AC⊥BC ……4分
又平面PAC平面ABC=AC,BC平面ABC
BC⊥平面PAC,又BC平面PBC
平面PBC⊥平面PAC ……6分
(Ⅱ)如圖所示建立空間直角坐標系,
則C(0,0,0),A(4,0,0),B(0,8,0),P(2,0,),
……8分
設平面PAB的法向量為
令
設平面PBC的法向量為
,
令=0,=1,=-, ……10分
二面角的平面角的余弦值為 ……12分
考點:本小題主要考查面面垂直的證明和二面角的求法.
點評:立體幾何問題,主要是考查學生的空間想象能力和邏輯推理能力,解決此類問題時,要緊扣相應的判定定理和性質(zhì)定理,要將定理中要求的條件一一列舉出來,缺一不可,用空間向量解決立體幾何問題時,要仔細運算,適當轉(zhuǎn)化.
科目:高中數(shù)學 來源: 題型:解答題
如圖,△ABC中,AC=BC=AB,ABED是邊長為1的正方形,EB⊥底面ABC,若G,F分別是EC,BD的中點.
(1)求證:GF∥底面ABC;
(2)求證:AC⊥平面EBC;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知矩形ABCD所在平面外一點P,PA⊥平面ABCD,E、F分別是AB, PC的中點
(1)求證:EF∥平面PAD;
(2)求證:EF⊥CD;
(3)若ÐPDA=45°,求EF與平面ABCD所成的角的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,PD⊥面ABCD,AD∥BC,CD=13,AB=12,BC=10,AD =12 BC. 點E、F分別是棱PB、邊CD的中點.(1)求證:AB⊥面PAD; (2)求證:EF∥面PAD
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在直角梯形ABCD中,,,且,E、F分別為線段CD、AB上的點,且.將梯形沿EF折起,使得平面平面BCEF,折后BD與平面ADEF所成角正切值為.
(Ⅰ)求證:平面BDE;
(Ⅱ)求平面BCEF與平面ABD所成二面角(銳角)的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,平面ABCD⊥平面ADEF,其中ABCD為矩形,ADEF為梯形,AF∥DE,AF⊥FE,AF=AD=2 DE=2,M為AD中點.
(Ⅰ) 證明;
(Ⅱ) 若二面角A-BF-D的平面角的余弦值為,求AB的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
如圖1,在等腰梯形CDEF中,CB、DA是梯形的高,,,現(xiàn)將梯形沿CB、DA折起,使且,得一簡單組合體如圖2示,已知分別為的中點.
圖1 圖2
(1)求證:平面;
(2)求證:;
(3)當多長時,平面與平面所成的銳二面角為?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
如圖,在多面體中,平面∥平面, ⊥平面,,,∥.
且 , .
(Ⅰ)求證:平面;
(Ⅱ)求證:∥平面;
(Ⅲ)求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com