【題目】已知函數(shù),( )是偶函數(shù).
(1)求的值;
(2)設(shè)函數(shù),其中.若函數(shù)與的圖象有且只有一個交點,求的取值范圍.
【答案】(1) (2)
【解析】試題分析:(1)由 ;(2)由已知可得方程只有一個解 只有一個解,又 ,設(shè),則有關(guān)于的方程,然后對、和分類討論得:實數(shù)的取值范圍是或.
試題解析:(1)∵函數(shù)是偶函數(shù),
∴ 恒成立,
∴,則.
(2),函數(shù)與的圖象有且只有一個公共點,即方程只有一個解,由已知得,
∴方程等價于,
設(shè),則有關(guān)于的方程,
若,即,則需關(guān)于的方程只有一個大于的正數(shù)解,
設(shè),∵, ,
∴恰好有一個大于的正解,
∴滿足題意;
若,即時,解得,不滿足題意;
若,即時,由,得或,
當時,則需關(guān)于的方程只有一個小于的整數(shù)解,
解得滿足題意;當時, 不滿足題意,
綜上所述,實數(shù)的取值范圍是或.
科目:高中數(shù)學 來源: 題型:
【題目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分別是AC、AD上的動點,且
(1)求證:不論為何值,總有平面BEF⊥平面ABC;
(2)當λ為何值時,平面BEF⊥平面ACD ?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點,圓.
(Ⅰ)若直線過點且到圓心的距離為1,求直線的方程;
(Ⅱ)設(shè)過點的直線與圓交于兩點(的斜率為正),當時,求以線段為直徑的圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠生產(chǎn)某種零件,每個零件的成本為40元,出廠單價定為60元.該廠為鼓勵銷售商訂購,決定當一次訂購量超過100個時,每多訂購一個,訂購的全部零件的出廠單價就降低0.02元,但實際出廠單價不能低于51元.
(1)當一次訂購量為多少個時,零件的實際出廠單價恰降為51元?
(2)設(shè)一次訂購量為個,零件的實際出廠單價為元,寫出函數(shù)的表達式;
(3)當銷售商一次訂購500個零件時,該廠獲得的利潤是多少元? (工廠售出一個零件的利潤=實際出廠單價-單件成本)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB=2,BC=2 ,E,F(xiàn)分別是AD,PC的中點.
(1)證明:PC⊥平面BEF;
(2)求平面BEF與平面BAP所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義域為的奇函數(shù).
(1)求的值;
(2)用函數(shù)單調(diào)性的定義證明函數(shù)在上是增函數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中正確的是__________.(填上所有正確命題的序號)
①若, ,則; ②若, ,則;
③若, ,則; ④若, , , ,則.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為常函數(shù))是奇函數(shù).
(1)判斷函數(shù)在上的單調(diào)性,并用定義法證明你的結(jié)論;
(2)若對于區(qū)間上的任意值,使得不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖動直線l:y=b與拋物線y2=4x交于點A,與橢圓 =1交于拋物線右側(cè)的點B,F(xiàn)為拋物線的焦點,則|AF|+|BF|+|AB|的最大值為( )
A.
B.
C.2
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com