已知雙曲線-=1的離心率為e,拋物線x=2py2的焦點為(e,0),則p的值為
A.2                   B.1              C.               D.
D

分析:根據(jù)雙曲線方程可知a和b的值,進而求得c的值,根據(jù)e= 求得e.根據(jù)拋物線方程整理成標(biāo)準(zhǔn)方程,根據(jù)焦點求得p.
解:依題意得雙曲線中a=2,b=2
∴c==4
∴e==
拋物線方程為y2=x,故=2,得p=,
故選D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線的一個焦點坐標(biāo)為,則其漸近線方程為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
設(shè)雙曲線的右頂點為是雙曲線上異于頂點的一個動點,從引雙曲線的兩條漸近線的平行線與直線(為坐標(biāo)原點)分別交于兩點.

(1) 證明:無論點在什么位置,總有;
(2) 設(shè)動點滿足條件: , 求點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分分)
已知雙曲線的左、  右頂點分別為,動直線與圓相切,且與雙曲線左、右兩支的交點分別為.

(Ⅰ)求的取值范圍,并求的最小值;
(Ⅱ)記直線的斜率為,直線的斜率為,那么,是定值嗎?并證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過雙曲線的左頂點A作斜率為1的直線,若與雙曲線的漸近線分別交于B、C兩點,且,則雙曲線的離心率是               (   )
A. B.   C.          D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知雙曲線C的中心是原點,右焦點為F(,0),一條漸近線m:x+y=0,設(shè)過點A(-3,0)的直線l
(1)求雙曲線C的方程;
(2)若過原點的直線a∥l,且a與l的距離為,求k的值;
(3)證明:當(dāng)k>時,在雙曲線C的右支上不存在點Q,使之到直線l的距離為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)平面內(nèi),不難得到“對于雙曲線上任意一點,若點軸、軸上的射影分別為,則必為定值”。類比于此,對于雙曲線上任意一點,類似的命題為                     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若點P是以為焦點的雙曲線上一點,滿足,且,
則此雙曲線的離心率為     ▲     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

以雙曲線的中心為頂點,且以該雙曲線的右焦點為焦點的拋物線方程____________

查看答案和解析>>

同步練習(xí)冊答案