【題目】平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù),且).以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)已知點P的極坐標為,Q為曲線上的動點,求的中點M到曲線的距離的最大值.
科目:高中數(shù)學 來源: 題型:
【題目】一胸針圖樣由等腰三角形及圓心在中軸線上的圓弧構成,已知,.為了增加胸針的美觀程度,設計師準備焊接三條金絲線且長度不小于長度,設.
(1)試求出金絲線的總長度,并求出的取值范圍;
(2)當為何值時,金絲線的總長度最小,并求出的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中醫(yī)藥研究所研制出一種新型抗癌藥物,服用后需要檢驗血液是否為陽性,現(xiàn)有份血液樣本每個樣本取到的可能性均等,有以下兩種檢驗方式:(1)逐份檢驗,則需要檢驗次;(2)混合檢驗,將其中份血液樣本分別取樣混合在一起檢驗,若結果為陰性,則這份的血液全為陰性,因而這份血液樣本只需檢驗一次就夠了;若檢驗結果為陽性,為了明確這份血液究竟哪份為陽性,就需要對這份再逐份檢驗,此時這份血液的檢驗次數(shù)總共為次假設在接受檢驗的血液樣本中,每份樣本的檢驗結果總陽性還是陰性都是相互獨立的,且每份樣本是陽性的概率為.
(1)假設有6份血液樣本,其中只有兩份樣本為陽性,若采取遂份檢驗的方式,求恰好經(jīng)過兩次檢驗就能把陽性樣本全部檢驗出來的概率.
(2)現(xiàn)取其中的份血液樣本,記采用逐份檢驗的方式,樣本需要檢驗的次數(shù)為;采用混合檢驗的方式,樣本簡要檢驗的總次數(shù)為;
(。┤,試運用概率與統(tǒng)計的知識,求關于的函數(shù)關系,
(ⅱ)若,采用混合檢驗的方式需要檢驗的總次數(shù)的期望比逐份檢驗的總次數(shù)的期望少,求的最大值(,,,,,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.命題“若,則”的否命題是“若,則”
B.命題“在△ABC中,若A>B,則sinA>sinB”的逆命題為假命題.
C.“”是“”的必要不充分條件
D.若“p或q”為真命題,則p,q至少有一個為真命題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為F,過F的直線與拋物線交于A,B兩點,點O為坐標原點,則下列命題中正確的個數(shù)為( )
①面積的最小值為4;
②以為直徑的圓與x軸相切;
③記,,的斜率分別為,,,則;
④過焦點F作y軸的垂線與直線,分別交于點M,N,則以為直徑的圓恒過定點.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù),且).以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)已知點P的極坐標為,Q為曲線上的動點,求的中點M到曲線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2020年春節(jié)期間,武漢市爆發(fā)了新型冠狀病毒肺炎疫情,在黨中央的堅強領導下,全國人民團結一心,眾志成城,共同抗擊疫情.某中學寒假開學后,為了普及傳染病知識,增強學生的防范意識,提高自身保護能力,校委會在全校學生范圍內(nèi),組織了一次傳染病及個人衛(wèi)生相關知識有獎競賽(滿分100分),競賽獎勵規(guī)則如下,得分在內(nèi)的學生獲三等獎,得分在內(nèi)的學生獲二等獎,得分在內(nèi)的學生獲一等獎,其他學生不得獎.教務處為了解學生對相關知識的掌握情況,隨機抽取了100名學生的競賽成績,并以此為樣本繪制了如下樣本頻率分布直方圖.
(1)現(xiàn)從該樣本中隨機抽取兩名學生的競賽成績,求這兩名學生中恰有一名學生獲獎的概率;
(2)若該校所有參賽學生的成績近似服從正態(tài)分布,其中為樣本平均數(shù)的估計值,利用所得正態(tài)分布模型解決以下問題:
(i)若該校共有10000名學生參加了競賽,試估計參賽學生中成績超過79分的學生數(shù)(結果四舍五入到整數(shù));
(ii)若從所有參賽學生中(參賽學生數(shù)大于10000)隨機抽取3名學生進行座談,設其中競賽成績在64分以上的學生數(shù)為,求隨機變量的分布列和均值.
附:若隨機變量服從正態(tài)分布,則,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱,中,側面是菱形,是中點,平面,平面與棱交于點,.
(1)求證:四邊形為平行四邊形;
(2)若與平面所成角的正弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某村為了脫貧致富,引進了兩種麻鴨品種,一種是旱養(yǎng)培育的品種,另一種是水養(yǎng)培育的品種.為了了解養(yǎng)殖兩種麻鴨的經(jīng)濟效果情況,從中隨機抽取500只麻鴨統(tǒng)計了它們一個季度的產(chǎn)蛋量(單位:個),制成了如圖的頻率分布直方圖,且已知麻鴨的產(chǎn)蛋量在的頻率為0.66.
(1)求,的值;
(2)已知本次產(chǎn)蛋量近似服從(其中近似為樣本平均數(shù),似為樣本方差).若本村約有10000只麻鴨,試估計產(chǎn)蛋量在110~120的麻鴨數(shù)量(以各組區(qū)間的中點值代表該組的取值).
(3)若以正常產(chǎn)蛋90個為標準,大于90個認為是良種,小于90個認為是次種.根據(jù)統(tǒng)計得出兩種培育方法的列聯(lián)表如下,請完成表格中的統(tǒng)計數(shù)據(jù),并判斷是否有99.5%的把握認為產(chǎn)蛋量與培育方法有關.
良種 | 次種 | 總計 | |
旱養(yǎng)培育 | 160 | 260 | |
水養(yǎng)培育 | 60 | ||
總計 | 340 | 500 |
附:,則,,.
,其中.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com