【題目】如圖,底面是等腰梯形,,,點(diǎn)為的中點(diǎn),以為邊作正方形,且平面平面.
(1)證明:平面平面.
(2)求點(diǎn)到平面的距離.
【答案】(1)證明見解析(2)
【解析】
(1)由、推出四邊形是平行四邊形,再由推出四邊形是菱形從而可得,利用面面垂直的性質(zhì)推出平面,即可推出兩平面垂直;(2)由(1)及已知條件可得四邊形是菱形且,推出相應(yīng)邊的長(zhǎng)度進(jìn)而求出的面積,利用面面垂直的性質(zhì)由平面平面推出、從而可求OF,最后利用等體積法即可求得到平面的距離.
(1)因?yàn)辄c(diǎn)為的中點(diǎn),,所以,
因?yàn)?/span>,所以,所以四邊形是平行四邊形.
因?yàn)?/span>,所以平行四邊形是菱形,所以.
因?yàn)槠矫?/span>平面,且平面平面,
所以平面,
因?yàn)?/span>平面,所以平面平面.
(2)記,的交點(diǎn)為,連接.
由(1)可知平面,則.
因?yàn)榈酌?/span>是等腰梯形,,,所以四邊形是菱形,且.
則,,從而的面積.
因?yàn)槠矫?/span>平面,且四邊形為正方形,所以,,
所以,則.
設(shè)點(diǎn)到平面的距離為.
因?yàn)?/span>,所以,
即,解得.
故點(diǎn)到平面的距離為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知平面,,,
且是的中點(diǎn),.
(1)求證:平面;
(2)求證:平面平面;
(3)求此多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)若,試判斷的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)為曲線上的點(diǎn),,垂足為,若的最小值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C的方程為:(x-3)2+(y-2)2=r2(r>0),若直線3x+y=3上存在一點(diǎn)P,在圓C上總存在不同的兩點(diǎn)M,N,使得點(diǎn)M是線段PN的中點(diǎn),則圓C的半徑r的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種植園在芒果臨近成熟時(shí),隨機(jī)從一些芒果樹上摘下100個(gè)芒果,其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計(jì)得頻率分布直方圖如圖所示.
(1)經(jīng)計(jì)算估計(jì)這組數(shù)據(jù)的中位數(shù);
(2)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機(jī)抽取6個(gè),再?gòu)倪@6個(gè)中隨機(jī)抽取3個(gè),求這3個(gè)芒果中恰有1個(gè)在內(nèi)的概率.
(3)某經(jīng)銷商來(lái)收購(gòu)芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計(jì)總體,該種植園中還未摘下的芒果大約還有10000個(gè),經(jīng)銷商提出如下兩種收購(gòu)方案:
A:所有芒果以10元/千克收購(gòu);
B:對(duì)質(zhì)量低于250克的芒果以2元/個(gè)收購(gòu),高于或等于250克的以3元/個(gè)收購(gòu),通過(guò)計(jì)算確定種植園選擇哪種方案獲利更多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為調(diào)查高三年級(jí)學(xué)生的身高情況,按隨機(jī)抽樣的方法抽取100名學(xué)生,得到男生身高情況的頻率分布直方圖(圖(1))和女生身高情況的頻率分布直方圖(圖(2)).已知圖(1)中身高在的男生人數(shù)有16人.
(1)試問(wèn)在抽取的學(xué)生中,男,女生各有多少人?
(2)根據(jù)頻率分布直方圖,完成下列的列聯(lián)表,并判斷能有多大(百分之幾)的把握認(rèn)為“身高與性別有關(guān)”?
總計(jì) | |||
男生身高 | |||
女生身高 | |||
總計(jì) |
(3)在上述100名學(xué)生中,從身高在之間的男生和身高在之間的女生中間按男、女性別分層抽樣的方法,抽出6人,從這6人中選派2人當(dāng)旗手,求2人中恰好有一名女生的概率.
參考公式:
參考數(shù)據(jù):
0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)《人民網(wǎng)》報(bào)道,“美國(guó)國(guó)家航空航天局( NASA)發(fā)文稱,相比20年前世界變得更綠色了,衛(wèi)星資料顯示中國(guó)和印度的行動(dòng)主導(dǎo)了地球變綠.”據(jù)統(tǒng)計(jì),中國(guó)新增綠化面積的420/0來(lái)自于植樹造林,下表是中國(guó)十個(gè)地區(qū)在2017年植樹造林的相關(guān)數(shù)據(jù).(造林總面積為人工造林、飛播造林、新封山育林、退化林修復(fù)、人工更新的面積之和)
單位:公頃
按造林方式分 | ||||||
地區(qū) | 造林總面積 | 人工造林 | 飛播造林 | 新封山育林 | 退化林修復(fù) | 人工更新 |
內(nèi)蒙 | 618484 | 311052 | 74094 | 136006 | 90382 | 6950 |
河北 | 583361 | 345625 | 33333 | 135107 | 65653 | 3643 |
河南 | 149002 | 97647 | 13429 | 221117 | 15376 | 133 |
重慶 | 226333 | 100600 | 、 62400 | 63333 | ||
陜西 | 297642 | 184108 | 33602 | 63865 | 16067 | |
甘肅 | 325580 | 260144 | 57438 | 7998 | ||
新疆 | 263903 | 118105 | 6264 | 126647 | 10796 | 2091 |
青海 | 178414 | 16051 | 159734 | 2629 | ||
寧夏 | 91531 | 58960 | 22938 | 8298 | 1335 | |
北京 | 19064 | 10012、 | 4000 | 3999 | 1053 |
(1)請(qǐng)根據(jù)上述數(shù)據(jù),分別寫出在這十個(gè)地區(qū)中人工造林面積與造林總面積的比值最大和最小的地區(qū);
(2)在這十個(gè)地區(qū)中,任選一個(gè)地區(qū),求該地區(qū)人工造林面積與造林總面積的比值不足50%的概率是多少?
(3)從上表新封山育林面積超過(guò)十萬(wàn)公頃的地區(qū)中,任選兩個(gè)地區(qū),求至少有一個(gè)地區(qū)退化林修復(fù)面積超過(guò)五萬(wàn)公頃的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com