過點引直線與圓交于兩點,那么弦的中點的軌跡為(      )

A.圓                            B.圓的一段弧

C.圓的一段弧        D.圓

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知焦點在x軸上的雙曲線C的兩條漸近線過坐標(biāo)原點,且兩條漸近線與以點A(0,
2
)
為圓心,1為半徑為圓相切,又知C的一個焦點與A關(guān)于直線y=x對稱.
(1)求雙曲線C的方程;
(2)若Q是雙曲線C上的任一點,F(xiàn)1、F2為雙曲線C的左、右兩個焦點,從F1引∠F1QF2的平分線的垂線,垂足為N,試求點N的軌跡方程;
(3)設(shè)直線y=mx+1與雙曲線C的左支交于A、B兩點,另一直線L經(jīng)過M(-2,0)及AB的中點,求直線L在y軸上的截距b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

附加題:如圖,過橢圓C:
y2
a2
+
x2
b2
=1
(a>b>0)上一動點P引圓x2+y2=b2的兩條切線PA,PB(A,B為切點).直線AB與x軸、y軸分別交于M、N兩點.
①已知P點的坐標(biāo)為(x0,y0),并且x0•y0≠0,試求直線AB的方程;    
②若橢圓的短軸長為8,并且
a2
|OM|2
+
b2
|ON|2
=
25
16
,求橢圓C的方程;
③橢圓C上是否存在P,由P向圓O所引兩條切線互相垂直?若存在,求出存在的條件;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知可行域的外接圓C與軸交于點A1、A2,橢圓C1以線段A1A2為短軸,離心率

(Ⅰ)求圓C及橢圓C1的方程;

(Ⅱ)過橢圓C1上一點P(不在坐標(biāo)軸上)向圓C引兩條切線PA、PB、A、B為切點,直線AB分別與x軸、y軸交于點M、N.求△MON面積的最小值.(O為原點).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年天津市寶坻區(qū)高三綜合模擬理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,圓與離心率為的橢圓)相切于點.

(Ⅰ)求橢圓的方程;

(Ⅱ)過點引兩條互相垂直的兩直線、與兩曲線分別交于點與點、(均不重合).

(ⅰ)若為橢圓上任一點,記點到兩直線的距離分別為,求的最大值;

(ⅱ)若,求的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)設(shè)x1、x2(x1≠x2)是函數(shù)f(x)=ax3+bx2-a2x(a>0)的兩個極值點.

(1)若x1=-1,x2=2,求函數(shù)f(x)的解析式;

(2)若|x1|+|x2|=,求b的最大值;

(3)若x1<x<x2,且x2=a,函數(shù)g(x)=f′(x)-a(x-x1),求證:|g(x)|≤a(3a+2)2.

(文)如圖,N為圓x2+(y-2)2=4上的點,OM為直徑,連結(jié)MN并延長交x軸于點C,過C引直線垂直于x軸,且與弦ON的延長線交于點D.

(1)已知點N(,1),求點D的坐標(biāo);

(2)若點N沿著圓周運動,求點D的軌跡E的方程;

(3)設(shè)P(0,a)(a>0),Q是點P關(guān)于原點的對稱點,直線l過點P交曲線E于A、B兩點,點H在射線QB上,且AH⊥PQ,求證:不論l繞點P怎樣轉(zhuǎn)動,恒有.

查看答案和解析>>

同步練習(xí)冊答案