(本小題滿分13分)
已知橢圓C的對(duì)稱(chēng)軸為坐標(biāo)軸,且短軸長(zhǎng)為4,離心率為。
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C的焦點(diǎn)在y軸上,斜率為1的直線l與C相交于A,B兩點(diǎn),且
,求直線l的方程。

(Ⅰ)(Ⅱ)

解析試題分析:(Ⅰ)設(shè)橢圓C的長(zhǎng)半軸長(zhǎng)為a(a>0),短半軸長(zhǎng)為b(b>0),
則2b=4,。            2分
解得a=4,b=2。                      3分
因?yàn)闄E圓C的對(duì)稱(chēng)軸為坐標(biāo)軸,
所以橢圓C的方程為標(biāo)準(zhǔn)方程,且為。     5分
(Ⅱ)設(shè)直線l的方程為,A(x1,y1),B(x2,y2),     6分
由方程組,消去y,
,      7分
由題意,得, 8分
,  9分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/96/c/z9x2m1.png" style="vertical-align:middle;" />
, 11分
所以,解得m=±2,
驗(yàn)證知△>0成立,
所以直線l的方程為。      13分
考點(diǎn):橢圓方程幾何性質(zhì)及直線與橢圓相交弦長(zhǎng)問(wèn)題
點(diǎn)評(píng):直線與橢圓相交問(wèn)題常借助與韋達(dá)定理設(shè)而不求簡(jiǎn)化計(jì)算,本題涉及到的弦長(zhǎng)公式,其中k是直線斜率,是兩交點(diǎn)橫坐標(biāo)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)己知、、是橢圓)上的三點(diǎn),其中點(diǎn)的坐標(biāo)為,過(guò)橢圓的中心,且,
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)點(diǎn)的直線(斜率存在時(shí))與橢圓交于兩點(diǎn),,設(shè)為橢圓 軸負(fù)半軸的交點(diǎn),且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)
雙曲線的中心為原點(diǎn),焦點(diǎn)在軸上,兩條漸近線分別為,經(jīng)過(guò)右焦點(diǎn)垂直于的直線分別交兩點(diǎn).已知成等差數(shù)列,且同向.
(Ⅰ)求雙曲線的離心率;
(Ⅱ)設(shè)被雙曲線所截得的線段的長(zhǎng)為4,求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分15分)
給定橢圓C:,稱(chēng)圓心在原點(diǎn)O、半徑是的圓為橢圓C的“準(zhǔn)圓”.已知橢圓C的一個(gè)焦點(diǎn)為,其短軸的一個(gè)端點(diǎn)到點(diǎn)的距離為
(1)求橢圓C和其“準(zhǔn)圓”的方程;
(2)若點(diǎn)是橢圓C的“準(zhǔn)圓”與軸正半軸的交點(diǎn),是橢圓C上的兩相異點(diǎn),且軸,求的取值范圍;
(3)在橢圓C的“準(zhǔn)圓”上任取一點(diǎn),過(guò)點(diǎn)作直線,使得與橢圓C都只有一個(gè)交點(diǎn),試判斷是否垂直?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)
已知橢圓的離心率為,橢圓C上任意一點(diǎn)到橢圓兩個(gè)焦點(diǎn)的距離之和為6。
(1)求橢圓C的方程;
(2)設(shè)直線與橢圓C交于A、B兩點(diǎn),點(diǎn)P(0,1),且|PA|=|PB|,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,是半圓的直徑,是半圓(除端點(diǎn))上的任意一點(diǎn).在線段的延長(zhǎng)線上取點(diǎn),使,試求動(dòng)點(diǎn)的軌跡方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)如圖,已知直線OP1OP2為雙曲線E:的漸近線,△P1OP2的面積為,在雙曲線E上存在點(diǎn)P為線段P1P2的一個(gè)三等分點(diǎn),且雙曲線E的離心率為.

(1)若P1、P2點(diǎn)的橫坐標(biāo)分別為x1x,則x1x2之間滿足怎樣的關(guān)系?并證明你的結(jié)論;
(2)求雙曲線E的方程;
(3)設(shè)雙曲線E上的動(dòng)點(diǎn),兩焦點(diǎn),若為鈍角,求點(diǎn)橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓O和定點(diǎn)A(2,1),由圓O外一點(diǎn)向圓O引切線PQ,切點(diǎn)為Q,且滿足

(1) 求實(shí)數(shù)a、b間滿足的等量關(guān)系;
(2) 若以P為圓心所作的圓P與圓O有公共點(diǎn),試求半徑取最小值時(shí)圓P的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)如圖所示,橢圓C 的離心率,左焦點(diǎn)為右焦點(diǎn)為,短軸兩個(gè)端點(diǎn)為.與軸不垂直的直線與橢圓C交于不同的兩點(diǎn)、,記直線、的斜率分別為,且

(1)求橢圓 的方程;
(2)求證直線 與軸相交于定點(diǎn),并求出定點(diǎn)坐標(biāo).
(3)當(dāng)弦 的中點(diǎn)落在內(nèi)(包括邊界)時(shí),求直線的斜率的取值。

查看答案和解析>>

同步練習(xí)冊(cè)答案