若f(x)=2cos(ωx+φ)+m,對任意實數(shù)t都有f(t+)=f(-t),且f()=-1則實數(shù)m的值等于( )
A.±1
B.-3或1
C.±3
D.-1或3
【答案】分析:通過f(t+)=f(-t),判斷函數(shù)的對稱軸,就是函數(shù)取得最值的x值,結(jié)合f()=-1,即可求出m的值.
解答:解:因為f(x)=2cos(ωx+φ)+m,對任意實數(shù)t都有f(t+)=f(-t),
所以函數(shù)的對稱軸是x=,就是函數(shù)取得最值,又f()=-1,
所以-1=±2+m,所以m=1或-3.
故選B.
點評:本題是基礎(chǔ)題,考查三角函數(shù)的對稱軸的應(yīng)用,不求解析式,直接判斷字母的值的方法,考查學(xué)生靈活解答問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=2cos(ωx+φ)+m,對任意實數(shù)t都有f(t+
π
4
)=f(-t),且f(
π
8
)=-1則實數(shù)m的值等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=2cos(wx+φ)+m(m>0),對任意實數(shù)t都有f(t+
π
4
)=f(-t)
,且f(
π
8
)=-1
,則實數(shù)m的值等于
1或-3
1或-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=2cos α-sin x,則f′(α)等于( 。
A、-sin αB、-cos αC、-2sin α-cos αD、-3cos α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省寧波市高一(上)期末數(shù)學(xué)試卷(解析版) 題型:選擇題

若f(x)=2cos(ωx+φ)+m,對任意實數(shù)t都有f(t+)=f(-t),且f()=-1則實數(shù)m的值等于( )
A.±1
B.-3或1
C.±3
D.-1或3

查看答案和解析>>

同步練習(xí)冊答案