已知為函數(shù)圖象上一點,為坐標原點,記直線的斜率
(1)若函數(shù)在區(qū)間上存在極值,求實數(shù)的取值范圍;
(2)當 時,不等式恒成立,求實數(shù)的取值范圍;
(3)求證:
(1);(2);(3)證明過程詳見解析.

試題分析:本題主要考查導數(shù)的應用、不等式、數(shù)列等基礎知識,考查思維能力、運算能力和思維的嚴謹性.第一問,考查求導求極值問題;第二問,是恒成立問題,將第一問的代入,整理表達式,得出,構造函數(shù),下面的主要任務是求出函數(shù)的最小值,所以;第三問,是不等式的證明,先利用放縮法構造出所證不等式的形式,構造數(shù)列,利用累加法得到所證不等式的左邊,右邊利用裂項相消法求和,再次利用放縮法得到結論.
試題解析:(1)由題意,,所以       2分
時,;當時,
所以上單調遞增,在上單調遞減,故處取得極大值.
因為函數(shù)在區(qū)間(其中)上存在極值,
所以,得.即實數(shù)的取值范圍是.        4分
(2)由,令,
.                           6分
,則,
因為所以,故上單調遞增.        8分
所以,從而
上單調遞增,
所以實數(shù)的取值范圍是.                    10分
(3)由(2) 知恒成立,
         12分
,        14分
所以, ,  ,
將以上個式子相加得:
.               16分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

若定義在上的函數(shù)同時滿足:①;②;③若,且,則成立.則稱函數(shù)為“夢函數(shù)”.
(1)試驗證在區(qū)間上是否為“夢函數(shù)”;
(2)若函數(shù)為“夢函數(shù)”,求的最值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知,若存在,使得,則的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

,且方程有兩個不同的實數(shù)根,則這兩個實根的和為           .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若存在正數(shù),使成立,則實數(shù)的取值范圍是          .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知定義在R上的函數(shù)對任意的都滿足,當 時,,若函數(shù)至少6個零點,則取值范圍是(      )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若函數(shù)在其定義域內的一個子區(qū)間(k-1,k+1)內不是單調函數(shù),則實數(shù)k的取值范圍是(   )
A.B.
C.D.不存在這樣的實數(shù)k

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù),若,則          .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

定義在上的函數(shù)滿足.若當時.,則當時,=        .

查看答案和解析>>

同步練習冊答案