精英家教網 > 高中數學 > 題目詳情

(本題滿分10分)求雙曲線的焦點坐標,離心率和漸近線方程.

焦點坐標為:,離心率為:,漸近線方程為:

解析試題分析:將方程化為標準方程,
得:,,                                              ……4分
所以焦點坐標為:,                                   ……6分
離心率為:                                                      ……8分
漸近線方程為:.                                            ……10分
考點:本小題主要考查由雙曲線的標準方程求焦點、離心率、漸近線等基本量,考查學生對基礎知識的掌握和計算能力.
點評:由雙曲線的標準方程求基本量關鍵是分清焦點在哪個坐標軸上,分清.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知橢圓的離心率為,橢圓短軸的一個端點與兩個焦
(Ⅰ)求橢圓的方程;
(Ⅱ)已知動直線與橢圓相交于兩點. ①若線段中點的
橫坐標為,求斜率的值;②若點,求證:為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(12分)已知拋物線過點.(1)求拋物線的方程,并求其準線方程;
(2)是否存在平行于為坐標原點)的直線,使得直線與拋物線有公共點,且直線
距離等于?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某拋物線形拱橋跨度是20米,拱高4米,在建橋時每隔4米需用一支柱支撐,求其中最長的支柱的長.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(12分)已知橢圓,過點(m,0)作圓的切線交橢圓G于A,B兩點.
(1)求橢圓G的焦點坐標和離心率;
(2)將表示為m的函數,并求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題15分)設拋物線和點,.斜率為的直線與拋物線相交不同的兩個點.若點恰好為的中點.
(1)求拋物線的方程,
(2) 拋物線上是否存在異于的點,使得經過點的圓和拋物線處有相同的切線.若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分14分)(理科)已知橢圓,過焦點且垂直于長軸的弦長為1,且焦點與短軸兩端點構成等邊三角形.
(1)求橢圓的方程;
(2)過點的直線交橢圓于兩點,交直線于點,且,,
求證:為定值,并計算出該定值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分13分) 已知拋物線與直線相交于兩點.
(1)求證:以為直徑的圓過坐標系的原點;(2)當的面積等于時,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分14分)已知長方形,,以的中點
原點建立如圖所示的平面直角坐標系.
(1)求以A、B為焦點,且過C、D兩點的橢圓的標準方程;
(2)設橢圓上任意一點為P,在x軸上有一個動點Q(t,0),其中,探究的最
小值。

查看答案和解析>>

同步練習冊答案