(2013•嘉定區(qū)一模)給定2個(gè)長(zhǎng)度為1且互相垂直的平面向量
OA
OB
,點(diǎn)C在以O(shè)為圓心的圓弧
AB
上運(yùn)動(dòng),若
OC
=x
OA
+y
OB
,其中x,y∈R,則(x-1)2+y2的最大值為
2
2
分析:根據(jù)點(diǎn)C在以O(shè)為圓心的圓弧AB上運(yùn)動(dòng),利用圓的參數(shù)方程設(shè)出C點(diǎn)的坐標(biāo),把要求最值的量用參數(shù)表示出來(lái),根據(jù)三角函數(shù)的輔角公式和角的范圍,寫出最值.
解答:解:∵點(diǎn)C在以O(shè)為圓心的圓弧AB上運(yùn)動(dòng),
∴可以設(shè)圓的參數(shù)方程x=cosθ,y=sinθ,θ∈[0°,90°]
∴(x-1)2+y2=2-2cosθ
∵θ∈[0°,90°]
∴c0sθ∈[0,1],
∴∴(x-1)2+y2的最大值是 2.
故答案為2.
點(diǎn)評(píng):此題是個(gè)中檔題.本題考查圓的參數(shù)方程,考查向量在幾何中的應(yīng)用,考查三角函數(shù)最值的求法,本題是一個(gè)比較簡(jiǎn)單的綜合題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•嘉定區(qū)一模)書架上有3本不同的數(shù)學(xué)書,2本不同的語(yǔ)文書,2本不同的英語(yǔ)書,將它們?nèi)我獾嘏懦梢慌,則左邊3本都是數(shù)學(xué)書的概率為
1
35
1
35
(結(jié)果用分?jǐn)?shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•嘉定區(qū)一模)若雙曲線x2-
y2
k
=1
的焦點(diǎn)到漸近線的距離為2
2
,則實(shí)數(shù)k的值是
8
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•嘉定區(qū)一模)如圖所示的算法框圖,若輸出S的值是90,那么在判斷框(1)處應(yīng)填寫的條件是
k≤8
k≤8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•嘉定區(qū)一模)如圖,在平面直角坐標(biāo)系xOy中,橢圓
x2
a2
+
y2
b2
=1(a>b>0)被圍于由4條直線x=±a,y=±b所圍成的矩形ABCD內(nèi),任取橢圓上一點(diǎn)P,若
OP
=m•
OA
+n•
OB
(m、n∈R),則m、n滿足的一個(gè)等式是
m2+n2=
1
2
m2+n2=
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•嘉定區(qū)一模)設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且a5+a13=34,S3=9.?dāng)?shù)列{bn}的前n項(xiàng)和為Tn,滿足Tn=1-bn
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)寫出一個(gè)正整數(shù)m,使得
1
am+9
是數(shù)列{bn}的項(xiàng);
(3)設(shè)數(shù)列{cn}的通項(xiàng)公式為cn=
an
an+t
,問(wèn):是否存在正整數(shù)t和k(k≥3),使得c1,c2,ck成等差數(shù)列?若存在,請(qǐng)求出所有符合條件的有序整數(shù)對(duì)(t,k);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案