數(shù)列{an}的前n項和為Sn,若對于任意的正整數(shù)n都有Sn=2an-3n.
(1)設(shè)bn=an+3,求證:數(shù)列{bn}是等比數(shù)列,并求出{an}的通項公式;
(2)求數(shù)列{nan}的前n項和.
分析:(1)通過遞推關(guān)系式求出an與an+1的關(guān)系,推出{an+3}即數(shù)列{bn}是等比數(shù)列,求出數(shù)列{bn}的通項公式即可求出{an}的通項公式;
(2)寫出數(shù)列{nan}的通項公式,然后寫出前n項和的表達式通過錯位相減法求解即可.
解答:解:(1)∵Sn=2an-3n,對于任意的正整數(shù)都成立,
∴Sn+1=2an+1-3n-3,
兩式相減,得a n+1=2an+1-2an-3,即an+1=2an+3,
∴an+1+3=2(an+3),
所以數(shù)列{bn}是以2為公比的等比數(shù)列,
由已知條件得:S1=2a1-3,a1=3.
∴首項b1=a1+3=6,公比q=2,
∴an=6•2n-1-3=3•2n-3.
(2)∵nan=3×n•2n-3n
∴Sn=3(1•2+2•22+3•23+…+n•2n)-3(1+2+3+…+n),
2Sn=3(1•22+2•23+3•24+…+n•2n+1)-6(1+2+3+…+n),
∴-Sn=3(2+22+23+…+2n-n•2n+1)+3(1+2+3+…+n)
=
2(2n-1)
2-1
-6n•2n+
3n(n+1)
2

∴Sn=(6n-6)•2n+6-
3n(n+1)
2
點評:本題考查數(shù)列遞推式,等比關(guān)系的確定,數(shù)列的求和的方法---錯位相減法的應(yīng)用,高考參考題型,考查計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)等比數(shù)列{an}的公比q≠1,Sn表示數(shù)列{an}的前n項的和,Tn表示數(shù)列{an}的前n項的乘積,Tn(k)表示{an}的前n項中除去第k項后剩余的n-1項的乘積,即Tn(k)=
Tn
ak
(n,k∈N+,k≤n),則數(shù)列
SnTn
Tn(1)+Tn(2)+…+Tn(n)
的前n項的和是
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
(用a1和q表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若數(shù)列{an}的通項an=
1
pn-q
,實數(shù)p,q滿足p>q>0且p>1,sn為數(shù)列{an}的前n項和.
(1)求證:當n≥2時,pan<an-1;
(2)求證sn
p
(p-1)(p-q)
(1-
1
pn
)

(3)若an=
1
(2n-1)(2n+1-1)
,求證sn
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知Sn是數(shù)列{an}的前n項和,an>0,Sn=
a
2
n
+an
2
,n∈N*,
(1)求證:{an}是等差數(shù)列;
(2)若數(shù)列{bn}滿足b1=2,bn+1=2an+bn,求數(shù)列{bn}的通項公式bn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•商丘二模)數(shù)列{an}的前n項和為Sn,若數(shù)列{an}的各項按如下規(guī)律排列:
1
2
,
1
3
2
3
,
1
4
,
2
4
,
3
4
1
5
,
2
5
3
5
,
4
5
…,
1
n
,
2
n
,…,
n-1
n
,…有如下運算和結(jié)論:
①a24=
3
8
;
②數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等比數(shù)列;
③數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…的前n項和為Tn=
n2+n
4

④若存在正整數(shù)k,使Sk<10,Sk+1≥10,則ak=
5
7

其中正確的結(jié)論是
①③④
①③④
.(將你認為正確的結(jié)論序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①若數(shù)列{an}的前n項和Sn=2n+1,則數(shù)列{an}為等比數(shù)列;
②在△ABC中,如果A=60°,a=
6
,b=4
,那么滿足條件的△ABC有兩解;
③設(shè)函數(shù)f(x)=x|x-a|+b,則函數(shù)f(x)為奇函數(shù)的充要條件是a2+b2=0;
④設(shè)直線系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),則M中的直線所能圍成的正三角形面積都相等.
其中真命題的序號是

查看答案和解析>>

同步練習冊答案