(本小題滿分12分)
已知函數(shù)
(1)判斷其奇偶性;
(2)指出該函數(shù)在區(qū)間(0,1)上的單調(diào)性并證明;
(3)利用(1)、(2)的結(jié)論,指出該函數(shù)在(-1,0)上的增減性.

解:(1)函數(shù)的定義域為    ………………………2分

是奇函數(shù) ;  …………………………4分
(2)函數(shù)在(0,1)上是增函數(shù)
證明:任取滿足
 ……… 8分
,,,
因此函數(shù)在(0,1)上是遞增函數(shù);…………………… 10分
(3)由于上的奇函數(shù),在(0,1)上又是遞增函數(shù),
因而該函數(shù)在(-1,0)上也是增函數(shù).…………… 12分

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題12分)
如圖所示,將一矩形花壇ABCD擴建成一個更大的矩形花壇AMPN,要求M在AB的延長線上,N在AD的延長線上,且對角線MN過C點。已知AB=3米,AD=2米。設(shè)(單位:米),若(單位:米),則當AM,AN的長度分別是多少時,花壇AMPN的面積最大?并求出最大面積。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
某種型號的汽車在勻速行駛中每小時耗油量y(升)關(guān)于行駛速度x(千米/小時)的函數(shù)解析式可以表示為:已知甲、乙兩地相距100千米。
(Ⅰ)當汽車以40千米/小時的速度勻速行駛時,從甲地到乙地要耗油多少升?
(Ⅱ)當汽車以多大的速度勻速行駛時,從甲地到乙地耗油最少?最少為多少升?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題12分)已知函數(shù)(1)求的定義域;(2)求的值域。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè),, 其中是不等于零的常數(shù),
(1)、(理)寫出的定義域(2分);
(文)時,直接寫出的值域(4分)
(2)、(文、理)求的單調(diào)遞增區(qū)間(理5分,文8分);
(3)、已知函數(shù),定義:.其中,表示函數(shù)上的最小值,
表示函數(shù)上的最大值.例如:,,則 ,   ,
(理)當時,設(shè),不等式
恒成立,求的取值范圍(11分);
(文)當時,恒成立,求的取值范圍(8分);

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)
已知函數(shù).
(1)求證:不論為何實數(shù)總是為增函數(shù);
(2)確定的值, 使為奇函數(shù);
(3)當為奇函數(shù)時, 求的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,互相垂直的兩條公路旁有一矩形花園,現(xiàn)欲將其擴建成一個更大的三角形花園,要求在射線上,在射線上,且過點,其中米,米. 記三角形花園的面積為.
(1)設(shè)米,將表示成的函數(shù).
(2)的長度是多少時,最小?并求的最小值.
(3)要使不小于平方米,則的長應(yīng)在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

((本小題滿分12分)
已知函數(shù)上的增函數(shù),
(Ⅰ)若,求證:
(Ⅱ)判斷(Ⅰ)中命題的逆命題是否成立,并用反證法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14分)
(1)已知是奇函數(shù),求常數(shù)m的值;
(2)畫出函數(shù)的圖象,并利用圖象回答:
k為何值時,方程|3x-1|=k無解?有一解?有兩解?

查看答案和解析>>

同步練習冊答案