甲、乙兩隊在進行一場五局三勝制的排球比賽中,規(guī)定先贏三局的隊獲勝,并且比賽就此結(jié)束,現(xiàn)已知甲、乙兩隊每比賽一局,甲隊獲勝的概率為,乙隊獲勝的概率為,且每局比賽的勝負是相互獨立的,問:
(1)甲隊以獲勝的概率是多少?
(2)乙隊獲勝的概率是多少?

(1)(2)

解析試題分析:解:(1)設甲隊以獲勝的概率為,則
(2)設乙隊獲勝的概率,則
考點:獨立重復試驗的概率
點評:解決的關鍵是理解獨立重復試驗的概率的公式,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

隨機抽取某中學甲乙兩班各10名同學,測量他們的身高(單位:)獲得身高數(shù)據(jù)的莖葉圖如下:
 
(1)根據(jù)莖葉圖判斷哪個班的平均身高較高。
(2)計算甲班的樣本方差。
(3)現(xiàn)從甲乙兩班同學中各隨機抽取一名身高不低于的同學,求至少有一名身高大于的同學被抽中的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

甲、乙兩個同學同時報名參加某重點高校2010年自主招生,高考前自主招生的程序為審核材料和文化測試,只有審核過關后才能參加文化測試,文化測試合格者即可獲得自主招生入選資格。已知甲,乙兩人審核過關的概率分別為,審核過關后,甲、乙兩人文化測試合格的概率分別為
(1)求甲,乙兩人至少有一人通過審核的概率;
(2)設表示甲,乙兩人中獲得自主招生入選資格的人數(shù),求的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
公安部發(fā)布酒后駕駛處罰的新規(guī)定(一次性扣罰12分)已于2011年4月1日起正式施行.酒后違法駕駛機動車的行為分成兩個檔次:“酒后駕車”和“醉酒駕車”,其檢測標準是駕駛?cè)藛T血液中的酒精含量(簡稱血酒含量,單位是毫克/100毫升),當時,為酒后駕車;當時,為醉酒駕車.某市公安局交通管理部門在某路段的一次攔查行動中,依法檢查了200輛機動車駕駛員的血酒含量(如下表).

血酒含量
(0,20)
[20,40)
[40,60)
[60,80)
[80,100)
[100,120]
人數(shù)
194
1
2
1
1
1
依據(jù)上述材料回答下列問題:
(1)分別寫出酒后違法駕車發(fā)生的頻率和酒后違法駕車中醉酒駕車的頻率;
(2)從酒后違法駕車的司機中,抽取2人,請一一列舉出所有的抽取結(jié)果,并求取到的2人中含有醉酒駕車的概率. (酒后駕車的人用大寫字母如表示,醉酒駕車的人用小寫字母如表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在集合內(nèi)任取一個元素,能使代數(shù)式的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為了解某班學生關注NBA是否與性別有關,對本班48人進行了問卷調(diào)查得到如下的列聯(lián)表:

 
關注NBA
不關注NBA
合  計
男   生
 
6
 
女   生
10
 
 
合   計
 
 
48
已知在全班48人中隨機抽取1人,抽到關注NBA的學生的概率為2/3
⑴請將上面列連表補充完整,并判斷是否有的把握認為關注NBA與性別有關?
⑵現(xiàn)從女生中抽取2人進一步調(diào)查,設其中關注NBA的女生人數(shù)為X,求X的分布列與數(shù)學期望。
附:,其中

0.15
0.10
0.05
0.025
0.010

2.072
2.706
3.841
5.024
6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在某國際高端經(jīng)濟論壇上,前六位發(fā)言的是與會的含有甲、乙的6名中國經(jīng)濟學專家,他們的發(fā)言順序通過隨機抽簽方式?jīng)Q定.
(Ⅰ)求甲、乙兩位專家恰好排在前兩位出場的概率;
(Ⅱ)發(fā)言中甲、乙兩位專家之間的中國專家數(shù)記為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

一個口袋中有紅球3個,白球4個.
(Ⅰ)從中不放回地摸球,每次摸2個,摸到的2個球中至少有1個紅球則中獎,求恰好第2次中獎的概率;
(Ⅱ)從中有放回地摸球,每次摸2個,摸到的2個球中至少有1個紅球則中獎,連續(xù)摸4次,求中獎次數(shù)X的數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

一名學生每天騎自行車上學,從家到學校的途中有5個交通崗,假設他在各交通崗遇到紅燈的事件是相互獨立的,并且概率都是.
(1)求這名學生在途中遇到紅燈的次數(shù)ξ的分布列;
(2)求這名學生在首次遇到紅燈或到達目的地停車前經(jīng)過的路口數(shù)η的分布列;
(3)這名學生在途中至少遇到一次紅燈的概率.

查看答案和解析>>

同步練習冊答案