(1)求Sn;
(2)設(shè)cn=an+8n+3,數(shù)列{dn}滿足d1=c1,dn+1=(n∈N*),求數(shù)列{dn}的通項(xiàng)公式;
(3)設(shè)g(x)是定義在正整數(shù)集上的函數(shù),對(duì)于任意的正整數(shù)x1、x2,恒有g(shù)(x1x2)=x1g(x2)+x2g(x1)成立,且g(2)=a(a為常數(shù),且a≠0),記bn=,試判斷數(shù)列{bn}是否為等差數(shù)列,并說(shuō)明理由.
解:(1)由已知an=-6n-2,故{an}是以a1=-8為首項(xiàng)公差為-6的等差數(shù)列.
所以Sn=-3n2-5n.
(2)因?yàn)閏n=an+8n+3=-6n-2+8n+3=2n+1(n∈N*),
dn+1==2dn+1,因此dn+1+1=2(dn+1)(n∈N*).
由于d1=c1=3,
所以{dn+1}是首項(xiàng)為d1+1=4,公比為2的等比數(shù)列.
故dn+1=4×2n-1=2n+1,
所以dn=2n+1-1.
(3)方法一:g()=g(2n)=2n-1g(2)+2g(2n-1),
則bn==+,bn+1=+.
bn+1-bn===.
因?yàn)閍為常數(shù),則數(shù)列{bn}是等差數(shù)列.
方法二:因?yàn)間(x1x2)=x1g(x2)+x2g(x1)成立,且g(2)=a,
故g()=g(2n)=2n-1g(2)+2g(2n-1)
=2n-1g(2)+2[2n-2g(2)+2g(2n-2)]
=2×2n-1g(2)+22g(2n-2)
=2×2n-1g(2)+22[2n-3g(2)+2g(2n-3)]
=3×2n-1g(2)+23g(2n-3)
=…
=(n-1)×2n-1g(2)+2n-1g(2)
=n·2n-1g(2)
=an·2n-1,
所以bn= n.
則bn+1-bn=.
由a為常數(shù),因此,數(shù)列{bn}是等差數(shù)列.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
A、16 | B、8 | C、4 | D、不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com