已知正四面體ABCD中,M、N分別是BC和AD中點(diǎn),則異面直線(xiàn)AM和CN所成的角的正切值為( )

A.
B.
C.
D.
【答案】分析:畫(huà)出立體圖形,根據(jù)中點(diǎn)找平行線(xiàn),把所求的異面直線(xiàn)角轉(zhuǎn)化為一個(gè)三角形的內(nèi)角來(lái)計(jì)算..
解答:解:如圖,連接BN,取BN的中點(diǎn)K,連接FK,則MK∥CN,故∠AMKF即為所求的異面直線(xiàn)角或者其補(bǔ)角.
設(shè)這個(gè)正四面體的棱長(zhǎng)為2,在△AKM中,AM==CN,MK=CN=
AK===
∴cos∠AMK===
∴sin∠AMK===
∴tan∠AMK===
故選A.
點(diǎn)評(píng):本題考查空間點(diǎn)、線(xiàn)、面的位置關(guān)系及學(xué)生的空間想象能力、求異面直線(xiàn)角的能力.在立體幾何中找平行線(xiàn)是解決問(wèn)題的一個(gè)重要技巧,這個(gè)技巧就是通過(guò)三角形的中位線(xiàn)找平行線(xiàn),如果試題的已知中涉及到多個(gè)中點(diǎn),則找中點(diǎn)是出現(xiàn)平行線(xiàn)的關(guān)鍵技巧.本題易錯(cuò)點(diǎn)在于要看清是求異面直線(xiàn)AF=M和CN所成角的正切值,而不是余弦值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正四面體ABCD的表面積為S,其四個(gè)面的中心分別為E、F、G、H.設(shè)四面體EFGH的表面積為T(mén),則
T
S
等于( 。
A、
1
9
B、
4
9
C、
1
4
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正四面體ABCD的各棱長(zhǎng)為a,
(1)求正四面體ABCD的表面積;
(2)求正四面體ABCD外接球的半徑R與內(nèi)切球的體積V內(nèi)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正四面體ABCD中,M、N分別是BC和AD中點(diǎn),則異面直線(xiàn)AM和CN所成的角的正切值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•大連二模)已知正四面體ABCD的所有棱長(zhǎng)均為3
6
,頂點(diǎn)A、B、C在半球的底面內(nèi),頂點(diǎn)D在半球面上,且D點(diǎn)在半球底面上的射影為半球的球心,則此半球的體積為
144π
144π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正四面體ABCD的棱長(zhǎng)為1,若以
AB
的方向?yàn)樽笠暦较颍瑒t該正四面體的左視圖與俯視圖面積和的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案