從集合{1,2,3,…,11}中任意取兩個(gè)元素作為橢圓=1方程中的m和n,則能組成落在矩形區(qū)域B={(x,y)||x|>11,|y|<9}內(nèi)的橢圓的個(gè)數(shù)是(    )

A.43                  B.72                 C.86                D.90

思路分析:要想讓橢圓落在矩形區(qū)域,只要判斷m,n的取值范圍就可以了.

解:根據(jù)題意,m是不大于10的正整數(shù)、n是不大于8的正整數(shù).但是當(dāng)m=n時(shí),=1是圓而不是橢圓.先確定n,n有8種可能,對(duì)每一個(gè)確定的n,m有10-1=9種可能.故滿(mǎn)足條件的橢圓有8×9=72個(gè).

誤區(qū)警示 在解題的時(shí)候如果粗心很可能忽略m=n這種情況的分析.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從集合{-1、-2、-3、-4、0、1、2、3、4、5}中,隨機(jī)選出5個(gè)數(shù)字組成一個(gè)子集,使得這5個(gè)數(shù)中的任何兩個(gè)數(shù)之和都不等于1,則取出這樣的子集的概率為
8
63
8
63

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從集合{1,2,3,4,5}中任取三個(gè)元素構(gòu)成三元有序數(shù)組(a1,a2,a3),規(guī)定a1<a2<a3
(1)從所有的三元有序數(shù)組中任選一個(gè),求它的所有元素之和等于10的概率
(2)定義三元有序數(shù)組(a1,a2,a3)的“項(xiàng)標(biāo)距離”為d=
3
i=1
|ai-i|
(其中
n
i=1
xi=x1+x2+…+xn
),從所有的三元有序數(shù)組中任選一個(gè),求它的“項(xiàng)標(biāo)距離”d為偶數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從集合{1,2,3,5,7,-4,-6,-8}中任取兩個(gè)不同的元素,分別作為方程Ax2+By2=1中的A、B的值,則此方程可表示
30
30
種不同的雙曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從集合{-1,1,2,3}中隨機(jī)選取一個(gè)數(shù)記為m,從集合{1,2,3}中隨機(jī)選取一個(gè)數(shù)記為n,則方程
x
2
 
m
+
y
2
 
n
=1表示橢圓的概率為
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從集合{1,2,3,…,20}中選3個(gè)不同的數(shù),使這3個(gè)數(shù)成遞增的等差數(shù)列,則這樣的數(shù)列共有
90
90
組.

查看答案和解析>>

同步練習(xí)冊(cè)答案