雙曲線a>0,b>0)的兩個焦點為F1、F2,若P為其上一點,且|PF1|=2|PF2|,則雙曲線離心率的取值范圍為(   )
A.(1,3)B.C.(3,+)D.
B
可用三角形的兩邊和大于第三邊,及兩邊差小于第三邊,但要注意前者可以取到等號成立,因為可以三點一線。也可用焦半徑公式確定ac的關(guān)系。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分10分)選修4-1:幾何證明選講
如圖,已知的兩條角平分線相交于H,,F上,且

(Ⅰ)證明:B、DH、E四點共圓;
(Ⅱ)證明:平分。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,給出定點A(a,0)  (a>0,a≠1)和直線lx=-1,B是直線l上的動點,∠BOA的角平分線交AB于點C,求點C的軌跡方程,并討論方程表示的曲線類型與a值的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

雙曲線的虛軸長等于(    )  
A.B.C.D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分15分)已知橢圓的左焦點為F,左右頂點分別為AC,
上頂點為B,過F,B,C三點作,其中圓心P的坐標為
(1) 若橢圓的離心率,求的方程;
(2)若的圓心在直線上,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

平面直角坐標系中,直線,,,上的兩動點,且,求使得四邊形周長最小時兩點的坐標及此時的最小周長

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在極坐標系中,,求直線的極坐標方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)雙曲線的離心率為,右準線為。
(Ⅰ)求雙曲線C的方程;
(Ⅱ)已知直線與雙曲線C交于不同的兩點A,B,且線段AB的中點在圓上,求m的值.  

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)圓為坐標原點
(I)若直線過點,且圓心到直線的距離等于1,求直線的方程;
(II)已知定點,若是圓上的一個動點,點滿足,求動點的軌跡方程。

查看答案和解析>>

同步練習冊答案