(理科)已知函數(shù)數(shù)學(xué)公式實常數(shù),下列結(jié)論中說法正確的序號是________;
(1)f(x)一定是增函數(shù);
(2)f(x)不一定是增函數(shù),但滿足上述條件的所有f(x)一定存在遞增區(qū)間;
(3)存在滿足上述條件的f(x),但它找不到遞增區(qū)間;
(4)存在滿足上述條件的函數(shù)f(x),既有遞增區(qū)間又有遞減區(qū)間.

解:由題意,f(x)在R上有可能是不連續(xù)的,如果f(x)是分段函數(shù)的話,那么f(x)就不是增函數(shù)了,而且f(x)可能找不到遞增區(qū)間,也有可能既有遞增區(qū)間又有遞減區(qū)間
故答案為(3)(4)
分析:根據(jù)所給函數(shù)滿足的條件可知,f(x)在R上有可能是不連續(xù)的,如果f(x)是分段函數(shù)的話,那么f(x)就不是增函數(shù)了,而且f(x)可能找不到遞增區(qū)間,也有可能既有遞增區(qū)間又有遞減區(qū)間,故可判斷.
點評:本題的考點是函數(shù)單調(diào)性的判斷與證明,主要考查單調(diào)性的定義,考查學(xué)生分析解決問題的能力,一定要注意定義中變量選取的任意性,否則會出錯.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(理科)已知函數(shù)y=f(x),x∈R滿足f(x+1)=af(x),a是不為0的實常數(shù).
(1)若函數(shù)y=f(x),x∈R是周期函數(shù),寫出符合條件a的值;
(2)若當(dāng)0≤x<1時,f(x)=x(1-x),且函數(shù)y=f(x)在區(qū)間[0,+∞)上的值域是閉區(qū)間,求a的取值范圍;
(3)若當(dāng)0<x≤1時,f(x)=3x+3-x,試研究函數(shù)y=f(x)在區(qū)間(0,+∞)上是否可能是單調(diào)函數(shù)?若可能,求出a的取值范圍;若不可能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科)已知函數(shù)y=f(x),x∈R,對任意實數(shù),x均有f(x)<f(x+a),a是正的實常數(shù),下列結(jié)論中說法正確的序號是
(3)(4)
(3)(4)
;
(1)f(x)一定是增函數(shù);
(2)f(x)不一定是增函數(shù),但滿足上述條件的所有f(x)一定存在遞增區(qū)間;
(3)存在滿足上述條件的f(x),但它找不到遞增區(qū)間;
(4)存在滿足上述條件的函數(shù)f(x),既有遞增區(qū)間又有遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(理科)已知函數(shù)y=f(x),x∈R滿足f(x+1)=af(x),a是不為0的實常數(shù).
(1)若函數(shù)y=f(x),x∈R是周期函數(shù),寫出符合條件a的值;
(2)若當(dāng)0≤x<1時,f(x)=x(1-x),且函數(shù)y=f(x)在區(qū)間[0,+∞)上的值域是閉區(qū)間,求a的取值范圍;
(3)若當(dāng)0<x≤1時,f(x)=3x+3-x,試研究函數(shù)y=f(x)在區(qū)間(0,+∞)上是否可能是單調(diào)函數(shù)?若可能,求出a的取值范圍;若不可能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(理科)已知函數(shù)y=f(x),x∈R,對任意實數(shù),x均有f(x)<f(x+a),a是正的實常數(shù),下列結(jié)論中說法正確的序號是______;
(1)f(x)一定是增函數(shù);
(2)f(x)不一定是增函數(shù),但滿足上述條件的所有f(x)一定存在遞增區(qū)間;
(3)存在滿足上述條件的f(x),但它找不到遞增區(qū)間;
(4)存在滿足上述條件的函數(shù)f(x),既有遞增區(qū)間又有遞減區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案