【題目】己知函數(shù)是減函數(shù),則實(shí)數(shù)( )
A.2B.1C.D.
【答案】A
【解析】
求出原函數(shù)的定義域,求出原函數(shù)的導(dǎo)函數(shù),把f(x)是定義域內(nèi)的減函數(shù)轉(zhuǎn)化為f′(x)=aln(x+1)-2x恒成立.再利用導(dǎo)數(shù)求得導(dǎo)函數(shù)的最大值,由最大值等于0求得a值.
f(x)的定義域?yàn)?/span>(-1,+∞),f′(x)=aln(x+1)-2x.
由f(x)是減函數(shù)得,對(duì)任意的x∈(-1,+∞),都有f′(x)=aln(x+1)-2x≤0恒成立.
設(shè)g(x)=aln(x+1)-2x.
∵,由a>0知,,
∴當(dāng)時(shí),g'(x)>0;當(dāng)時(shí),g'(x)<0,
∴g(x)在上單調(diào)遞增,在上單調(diào)遞減,
∴g(x)在時(shí)取得最大值.
又∵g(0)=0,∴對(duì)任意的x∈(-1,+∞),g(x)≤g(0)恒成立,
即g(x)的最大值為g(0).
∴,解得a=2.
所以本題答案為A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,記函數(shù)的圖象為曲線C1,函數(shù)的圖象為曲線C2.
(Ⅰ)比較f(2)和1的大小,并說(shuō)明理由;
(Ⅱ)當(dāng)曲線C1在直線y=1的下方時(shí),求x的取值范圍;
(Ⅲ)證明:曲線C1和C2沒(méi)有交點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,直線的極坐標(biāo)方程為,現(xiàn)以極點(diǎn)為原點(diǎn),極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,曲線的參數(shù)方程為(為參數(shù)).
(1)求直線的直角坐標(biāo)方程和曲線的普通方程;
(2)若曲線為曲線關(guān)于直線的對(duì)稱曲線,點(diǎn),分別為曲線、曲線上的動(dòng)點(diǎn),點(diǎn)坐標(biāo)為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為為參數(shù).在以原點(diǎn)為極點(diǎn),為參數(shù)).在以原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(Ⅰ)求曲線C的普通方程和直線的直角坐標(biāo)方程;
(Ⅱ)設(shè),直線與曲線C交于M,N兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某蔬菜基地種植西紅柿,由歷年市場(chǎng)行情得知,從二月一日起的300天內(nèi),西紅柿市場(chǎng)銷(xiāo)售價(jià)與上市時(shí)間的關(guān)系用圖(1)的一條折線表示;西紅柿的種植成本與上市時(shí)間的關(guān)系用圖(2)的拋物線段表示.
(1)寫(xiě)出圖(1)表示的市場(chǎng)售價(jià)與時(shí)間的函數(shù)關(guān)系式;寫(xiě)出圖(2)表示的種植成本與時(shí)間的函數(shù)關(guān)系式;
(2)認(rèn)定市場(chǎng)售價(jià)減去種植成本為純收益,問(wèn)何時(shí)上市的西紅柿收益最大?(注:市場(chǎng)售價(jià)和種植成本的單位:元/kg,時(shí)間單位:天.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若時(shí),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)、、表示不同的直線,、、表示不同的平面,給出下列個(gè)命題:其中命題正確的個(gè)數(shù)是( )
①若,且,則;
②若,且,則;
③若,,,則;
④ 若,,,且,則.
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)().
(Ⅰ)若曲線上點(diǎn)處的切線過(guò)點(diǎn),求函數(shù)的單調(diào)減區(qū)間;
(Ⅱ)若函數(shù)在上無(wú)零點(diǎn),求的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com