已知△ABC中,A、B、C所對(duì)的邊分別為a、b、c,且a=
2
,b=
3
,B=60°那么角A等于(  )
分析:由正弦定理
a
sinA
=
b
sinB
的式子,解得sinA=
2
2
,結(jié)合A是三角形的內(nèi)角且a<b,可得A的大小.
解答:解:∵△ABC中,a=
2
,b=
3
,B=60°
∴由正弦定理
a
sinA
=
b
sinB
,得sinA=
asinB
b
=
2
×sin60°
3
=
2
2

∵A是三角形的內(nèi)角,且a<b
∴A=45°
故選:B
點(diǎn)評(píng):本題給出三角形的兩邊和其中一邊的對(duì)角,求另一邊的對(duì)角.著重考查了正弦定理和特殊角的三角函數(shù)值等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,A=60°,a=
15
,c=4,那么sinC=
2
5
5
2
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,A(4,2),B(1,8),C(-1,8).
(1)求AB邊上的高所在的直線方程;
(2)直線l∥AB,與AC,BC依次交于E,F(xiàn),S△CEF:S△ABC=1:4.求l所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,a=2,b=1,C=60°,則邊長c=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,a=2
3
,若
m
=(-cos
A
2
,sin
A
2
)
n
=(cos
A
2
,sin
A
2
)
滿足
m
n
=
1
2
.(1)若△ABC的面積S=
3
,求b+c的值.(2)求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,A,B,C的對(duì)邊分別為a,b,c,且
(AB)2
=
AB
AC
+
BA
BC
+
CA
CB

(Ⅰ)判斷△ABC的形狀,并求t=sinA+sinB的取值范圍;
(Ⅱ)若不等式a2(b+c)+b2(c+a)+c2(a+b)≥kabc,對(duì)任意的滿足題意的a,b,c都成立,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案