精英家教網 > 高中數學 > 題目詳情
在△ABC中,角A、B、C的對邊分別為a、b、c,且1+cos2A-cos2B-cos2C=2sinBsinC.
(Ⅰ) 求角A
(Ⅱ) 設f(B)=sin2B+sin2C,求f(B)的最大值.
分析:(Ⅰ)利用二倍角的余弦函數公式化簡已知得等式,再利用正弦定理得到關于a,b和c的關系式,利用余弦定理表示出cosA,把得出的關系式代入即可求出cosA的值,由A的范圍,利用特殊角的三角函數值即可求出A的度數;
(Ⅱ)把f(B)利用二倍角的余弦函數公式化簡,由(Ⅰ)中求出的A的度數,得到B和C的關系,表示出C,代入化簡后的式子中,合并后利用兩角差的正弦函數公式及特殊角的三角函數值化為一個角的正弦函數,由B的范圍求出這個角的范圍,令這個角等于
π
2
,即可求出此時B的度數和f(B)的最大值.
解答:解:(Ⅰ)由1+cos2A-cos2B-cos2C=2sinB•sinC得:
sin2B+sin2C-sin2A=sinBsinC,(2分)
由正弦定理得:b2+c2-a2=bc,(4分)
由余弦定理得:cosA=
b2+c2-a2
2bc
=
1
2
,
∵0<A<π,∴A=
π
3
;(6分)
(Ⅱ)f(B)=
1-cos2B
2
+
1-cos2C
2
=1-
1
2
(cos2B+cos2C),(8分)
由(Ⅰ)得B+C=π-A=
3
,∴C=
3
-B,
∴f(B)=1-
1
2
[cos2B+cos(
3
-2B)]=1-
1
2
[cos2B-cos(
π
3
-2B)]
=1-
1
2
(cos2B-
1
2
cos2B-
3
2
sin2B)=1+
1
2
sin(2B-
π
6
),(10分)
∵0<B<
3
,∴-
π
6
<2B-
π
6
6

令2B-
π
6
=
π
2
,即B=
π
3
時,f(B)取得最大值
3
2
.(12分)
點評:此題考查學生靈活運用正弦、余弦定理化簡求值,靈活運用二倍角的余弦函數公式及兩角和與差的正弦函數公式化簡求值,是一道中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大;
(2)若a=4,c=3,D為BC的中點,求△ABC的面積及AD的長度.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,角A,B,C所對邊的長分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習冊答案