【題目】已知△ABC中,AC= ,BC= ,△ABC的面積為 ,若線段BA的延長線上存在點(diǎn)D,使∠BDC= ,則CD=

【答案】
【解析】解:∵AC= ,BC= ,△ABC的面積為 = ACBCsin∠ACB= sin∠ACB, ∴sin∠ACB= ,
∴∠ACB= ,或 ,
∵若∠ACB= ,∠BDC= <∠BAC,可得:∠BAC+∠ACB> + >π,與三角形內(nèi)角和定理矛盾,
∴∠ACB=
∴在△ABC中,由余弦定理可得:AB=
∴∠B= ,
∴在△BCD中,由正弦定理可得:CD=
所以答案是:

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解正弦定理的定義的相關(guān)知識(shí),掌握正弦定理:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三角形ABC和梯形ACEF所在的平面互相垂直,AB⊥BC,AF⊥AC,AF 2CE,G是線段BF上一點(diǎn),AB=AF=BC.
(Ⅰ)若EG∥平面ABC,求 的值;
(Ⅱ)求二面角A﹣BF﹣E的大小的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠擬生產(chǎn)甲、乙兩種實(shí)銷產(chǎn)品.已知每件甲產(chǎn)品的利潤為0.4萬元,每件乙產(chǎn)品的利潤為0.3萬元,兩種產(chǎn)品都需要在A,B兩種設(shè)備上加工,且加工一件甲、乙產(chǎn)品在A,B設(shè)備上所需工時(shí)(單位:h)分別如表所示.

甲產(chǎn)品所需工時(shí)

乙產(chǎn)品所需工時(shí)

A設(shè)備

2

3

B設(shè)備

4

1

若A設(shè)備每月的工時(shí)限額為400h,B設(shè)備每月的工時(shí)限額為300h,則該廠每月生產(chǎn)甲、乙兩種產(chǎn)品可獲得的最大利潤為(
A.40萬元
B.45萬元
C.50萬元
D.55萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xOy中,雙曲線E的參數(shù)方程為 (θ為參數(shù)),設(shè)E的右焦點(diǎn)為F,經(jīng)過第一象限的漸進(jìn)線為l.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線l的極坐標(biāo)方程;
(2)設(shè)過F與l垂直的直線與y軸相交于點(diǎn)A,P是l上異于原點(diǎn)O的點(diǎn),當(dāng)A,O,F(xiàn),P四點(diǎn)在同一圓上時(shí),求這個(gè)圓的極坐標(biāo)方程及點(diǎn)P的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計(jì)劃購買1臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購進(jìn)機(jī)器時(shí),可以額外購買這種零件作為備件,每個(gè)200元. 在機(jī)器使用期間,如果備件不足再購買,則每個(gè)500.現(xiàn)需決策在購買機(jī)器時(shí)應(yīng)同時(shí)購買幾個(gè)易損零件,為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:

x表示1臺(tái)機(jī)器在三年使用期內(nèi)需更換的易損零件數(shù),y表示1臺(tái)機(jī)器在購買易損零件上所需的費(fèi)用(單位:元),表示購機(jī)的同時(shí)購買的易損零件數(shù).

(1)若=19,求yx的函數(shù)解析式;

(2)若要求“需更換的易損零件數(shù)不大于”的頻率不小于0.8,求的最小值;

(3)假設(shè)這100臺(tái)機(jī)器在購機(jī)的同時(shí)每臺(tái)都購買18個(gè)易損零件,或每臺(tái)都購買19個(gè)易損零件,分別計(jì)算這100臺(tái)機(jī)器在購買易損零件上所需費(fèi)用的平均數(shù),以此作為決策依據(jù),購買1臺(tái)機(jī)器的同時(shí)應(yīng)購買18個(gè)還是19個(gè)易損零件?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD中,點(diǎn)E,F(xiàn)分別是AB,BC的中點(diǎn),BD與EF交于點(diǎn)H,G為BD中點(diǎn),點(diǎn)R在線段BH上,且 =λ(λ>0).現(xiàn)將△AED,△CFD,△DEF分別沿DE,DF,EF折起,使點(diǎn)A,C重合于點(diǎn)B(該點(diǎn)記為P),如圖2所示.

(I)若λ=2,求證:GR⊥平面PEF;
(Ⅱ)是否存在正實(shí)數(shù)λ,使得直線FR與平面DEF所成角的正弦值為 ?若存在,求出λ的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知ABC的內(nèi)角A,BC的對(duì)邊分別為a,bc,2acosC=bcosC+ccosB

(1)求角C的大小;

(2)若c=,a2+b2=10,求ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和Sn滿足:Sn=nan﹣2nn﹣1),首項(xiàng)=1.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)設(shè)數(shù)列的前n項(xiàng)和為Mn,求證: Mn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,四邊形是菱形,,且,交于點(diǎn),上任意一點(diǎn).

(1)求證:

(2)若的中點(diǎn),且二面角的余弦值為,求與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案