【題目】已知橢圓的中心在原點,焦點在軸上,離心率為,右焦點到右頂點的距離為

1求橢圓的標(biāo)準(zhǔn)方程;

2是否存在與橢圓交于兩點的直線,使得成立?若存在,求出實數(shù)的取值范圍,若不存在,請說明理由

【答案】1;2存在,

【解析】

試題分析:1由已知條件推導(dǎo)出,,由此能求出橢圓的標(biāo)準(zhǔn)方程;2直線與橢圓方程聯(lián)立方程,得到關(guān)于的一元二次方程,由根的判別式和韋達(dá)定理結(jié)合已知條件能求出實數(shù)的取值范圍

試題解析:1設(shè)橢圓的方程為,半焦距為依題意

由右焦點到右頂點的距離為,得解得所以,所以橢圓的標(biāo)準(zhǔn)方程是

2解:存在直線,使得成立理由如下:

,化簡得

設(shè),則

,所以,

,

化簡得,,將代入中,

解得又由,,

從而,,所以實數(shù)的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是偶函數(shù)為實常數(shù)

1的值

2當(dāng),是否存在,使得函數(shù)在區(qū)間上的函數(shù)值組成的集合也是,若存在求出,的值否則,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程為,以極點為原點, 極軸為軸的正半軸, 建立平面直角坐標(biāo)系, 直線的參數(shù)方程為為參數(shù)).

1判斷直線與曲線的位置關(guān)系, 并說明理由;

2若直線與曲線相交于兩點, ,求直線的斜率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,且,

(Ⅰ)求證:數(shù)列是等比數(shù)列;

(Ⅱ)設(shè)是數(shù)列的前項和,若對任意的都成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解某地高一學(xué)生的體能狀況,某校抽取部分學(xué)生進(jìn)行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),圖中從左到右各小長方形的面積之比為2:4:17:15:9:3,第二小組頻數(shù)為12.

(1)第二小組的頻率是多少?樣本容量是多少?

(2)若次數(shù)在110以上為達(dá)標(biāo),試估計全體高一學(xué)生的達(dá)標(biāo)率為多少?

(3)通過該統(tǒng)計圖,可以估計該地學(xué)生跳繩次數(shù)的眾數(shù)是______,中位數(shù)是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1當(dāng)時,討論的單調(diào)性;

2若對任意的恒有成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某汽車美容公司為吸引顧客,推出優(yōu)惠活動:對首次消費的顧客,按/次收費, 并注冊成為會員, 對會員逐次消費給予相應(yīng)優(yōu)惠,標(biāo)準(zhǔn)如下:

消費次第






收費比例






該公司從注冊的會員中, 隨機(jī)抽取了位進(jìn)行統(tǒng)計, 得到統(tǒng)計數(shù)據(jù)如下:

消費次第






頻數(shù)






假設(shè)汽車美容一次, 公司成本為, 根據(jù)所給數(shù)據(jù), 解答下列問題:

1)估計該公司一位會員至少消費兩次的概率;

2)某會員僅消費兩次, 求這兩次消費中, 公司獲得的平均利潤;

3)以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率, 設(shè)該公司為一位會員服務(wù)的平均利潤為, 的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位最近組織了一次健身活動,活動分為登山組和游泳組,且每個職工至多參加了其中一組,在參加活動的職工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山組的職工占參加活動總?cè)藬?shù)的,且該組中青年人占50%,中年人占40%,老年人占10%.為了了解各組不同年齡層次的職工對本次活動的滿意程度,現(xiàn)用分層抽樣方法從參加活動的全體職工中抽取一個容量為200的樣本,試確定:

(1)游泳組中,青年人、中年人、老年人分別所占的比例;

(2)游泳組中,青年人、中年人、老年人分別應(yīng)抽取的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

討論的單調(diào)性;

當(dāng)時,設(shè),若存在,,使,求實數(shù)的取值范圍.(為自然對數(shù)的底數(shù),

查看答案和解析>>

同步練習(xí)冊答案