(本題滿分15分)楊輝是中國南宋末年的一位杰出的數學家、數學教育家,楊輝三角是楊輝的一大重要研究成果,它的許多性質與組合數的性質有關,楊輝三角中蘊藏了許多優(yōu)美的規(guī)律.下圖是一個11階楊輝三角:
(1)求第20行中從左到右的第3個數;
(2)若第行中從左到右第13與第14個數的比為,求的值;
(3)寫出第行所有數的和,寫出階(包括階)楊輝三角中的所有數的和;
(4)在第3斜列中,前5個數依次為1,3,6,10,15;第4斜列中,第5個數為35,我們發(fā)現,事實上,一般地有這樣的結論:第斜列中(從右上到左下)前個數之和,一定等于第斜列中第個數.
試用含有,的數學式子表示上述結論,并證明.
科目:高中數學 來源:2010年江蘇省泰州中學高二第二學期期末考試數學(理)試題 題型:解答題
(本題滿分15分)楊輝是中國南宋末年的一位杰出的數學家、數學教育家,楊輝三角是楊輝的一大重要研究成果,它的許多性質與組合數的性質有關,楊輝三角中蘊藏了許多優(yōu)美的規(guī)律.下圖是一個11階楊輝三角:
(1)求第20行中從左到右的第3個數;
(2)若第行中從左到右第13與第14個數的比為,求的值;
(3)寫出第行所有數的和,寫出階(包括階)楊輝三角中的所有數的和;
(4)在第3斜列中,前5個數依次為1,3,6,10,15;第4斜列中,第5個數為35,我們發(fā)現,事實上,一般地有這樣的結論:第斜列中(從右上到左下)前個數之和,一定等于第斜列中第個數.
試用含有,的數學式子表示上述結論,并證明.
查看答案和解析>>
科目:高中數學 來源:2010年江蘇省高二第二學期期末考試數學(理)試題 題型:解答題
(本題滿分15分)楊輝是中國南宋末年的一位杰出的數學家、數學教育家,楊輝三角是楊輝的一大重要研究成果,它的許多性質與組合數的性質有關,楊輝三角中蘊藏了許多優(yōu)美的規(guī)律.下圖是一個11階楊輝三角:
(1)求第20行中從左到右的第3個數;
(2)若第行中從左到右第13與第14個數的比為,求的值;
(3)寫出第行所有數的和,寫出階(包括階)楊輝三角中的所有數的和;
(4)在第3斜列中,前5個數依次為1,3,6,10,15;第4斜列中,第5個數為35,我們發(fā)現,事實上,一般地有這樣的結論:第斜列中(從右上到左下)前個數之和,一定等于第斜列中第個數.
試用含有,的數學式子表示上述結論,并證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
(本題滿分15分)楊輝是中國南宋末年的一位杰出的數學家、數學教育家,楊輝三角是楊輝的一大重要研究成果,它的許多性質與組合數的性質有關,楊輝三角中蘊藏了許多優(yōu)美的規(guī)律.下圖是一個11階楊輝三角:
(1)求第20行中從左到右的第3個數;
(2)若第行中從左到右第13與第14個數的比為,求的值;
(3)寫出第行所有數的和,寫出階(包括階)楊輝三角中的所有數的和;
(4)在第3斜列中,前5個數依次為1,3,6,10,15;第4斜列中,第5個數為35,我們發(fā)現,事實上,一般地有這樣的結論:第斜列中(從右上到左下)前個數之和,一定等于第斜列中第個數.
試用含有,的數學式子表示上述結論,并證明.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com