【題目】某校開設A、B、C、D、E五門選修課,要求每位同學彼此獨立地從中選修3門課程.某甲同學必選A課程,不選B課程,另從其余課程中隨機任選兩門課程.乙、丙兩名同學從五門課程中隨機任選三門課程.
(1)求甲同學選中C課程且乙、丙同學未選C課程的概率;
(2)用X表示甲、乙、丙選中C課程的人數(shù)之和,求X的分布列和數(shù)學期望.

【答案】
(1)解:設甲同學選中C課程為事件A,乙同學選中C課程為事件B,丙同學選中C課程為事件C,

甲同學選中C課程且乙、丙同學未選C課程為事件D,

由P(A)= = ,P( )= = ,P( )= = ,

由題意知每位同學選課彼此獨立,

∴甲同學選中C課程且乙、丙同學未選C課程的概率:

P(D)=P(A)P( )P( )= =


(2)解:由題意得X的可能取值為0,1,2,3,

P(X=0)= =

P(X=1)= + + = ,

P(X=2)= + = ,

P(X=3)= =

則X的分布列為:

X

0

1

2

3

P

∴數(shù)學期望E(X)= =


【解析】(1)設甲同學選中C課程為事件A,乙同學選中C課程為事件B,丙同學選中C課程為事件C,甲同學選中C課程且乙、丙同學未選C課程為事件D,由P(D)=P(A)P( )P( ),能求出甲同學選中C課程且乙、丙同學未選C課程的概率.(2)由題意得X的可能取值為0,1,2,3,分別求出相應的概率,由此能求出X的分布列和數(shù)學期望E(X).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y= 的定義域為R,則實數(shù)k的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在上的函數(shù)滿足條件,且函數(shù)是偶函數(shù),當時, ;當時, 的最小值為,則=( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設b和c分別是先后拋擲一枚骰子得到的點數(shù),用隨機變量ξ表示方程x2+bx+c=0實根的個數(shù)(重根按一個計).
(1)求方程x2+bx+c=0有實根的概率;
(2)求ξ的分布列和數(shù)學期望;
(3)求在先后兩次出現(xiàn)的點數(shù)中有5的條件下,方程x2+bx+c=0有實根的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在多面體SP﹣ABCD中,底面ABCD為矩形,AB=PC=1,AD=AS=2,且AS∥CPAS⊥面ABCD,EBC的中點.

1)求證:AE∥面SPD;

2)求三棱錐S-BPD的體積。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= (x+ ),g(x)= (x﹣ ).
(1)求函數(shù)h(x)=f(x)+2g(x)的零點;
(2)求函數(shù)F(x)=[f(x)]2n﹣[g(x)]2n(n∈N*)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,對角線AC與相鄰兩邊所成的角為α,β,則cos2α+cos2β=1.類比到空間中一個正確命題是:在長方體ABCD﹣A1B1C1D1中,對角線AC1與相鄰三個面所成的角為α,β,γ,則有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了檢驗學習情況,某培訓機構于近期舉辦一場競賽活動,分別從甲、乙兩班各抽取10名學員的成績進行統(tǒng)計分析,其成績的莖葉圖如圖所示(單位:分),假設成績不低于90分者命名為“優(yōu)秀學員”.

(1)分別求甲、乙兩班學員成績的平均分(結果保留一位小數(shù));

(2)從甲班4名優(yōu)秀學員中抽取兩人,從乙班2名80分以下的學員中抽取一人,求三人平均分不低于90分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,我市某居民小區(qū)擬在邊長為1百米的正方形地塊ABCD上劃出一個三角形地塊APQ種植草坪,兩個三角形地塊PAB與QAD種植花卉,一個三角形地塊CPQ設計成水景噴泉,四周鋪設小路供居民平時休閑散步,點P在邊BC上,點Q在邊CD上,記∠PAB=a.
(1)當∠PAQ= 時,求花卉種植面積S關于a的函數(shù)表達式,并求S的最小值;
(2)考慮到小區(qū)道路的整體規(guī)劃,要求PB+DQ=PQ,請?zhí)骄俊螾AQ是否為定值,若是,求出此定值,若不是,請說明理由.

查看答案和解析>>

同步練習冊答案